291 research outputs found

    Measurements of the branching fractions of the inclusive decays D0(D+)→π+π+π−X

    Get PDF
    Using eþe− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at a center-of mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the branching fractions of the inclusive decays D0 → πþπþπ−X and Dþ → πþπþπ−X, where pions from K0 S decays have been excluded from the πþπþπ− system and X denotes any possible particle combination. The branching fractions of D0ðDþÞ → πþπþπ−X are determined to be BðD0 → πþπþπ−XÞ¼ð17.60 0.11 0.22Þ% and BðDþ → πþπþπ−XÞ¼ð15.25 0.09 0.18Þ%, where the first uncertainties are statistical and the second systematic

    Search for an axion-like particle in J/ψJ/\psi radiative decays

    Full text link
    We search for an axion-like particle (ALP) aa through the process ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^+\pi^-J/\psi, J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in a data sample with (2708.1±14.5)×106(2708.1\pm14.5)\times10^6 ψ(3686)\psi(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling constant gaγγg_{a\gamma\gamma} are set at the 95\% confidence level in the mass range of 0.165\leq m_a\leq2.84\,\mbox{GeV}/c^2. The limits on B(J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times10^{-8} to 1.8×1061.8\times10^{-6} over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165\leq m_a\leq1.468\,\mbox{GeV}/c^2.Comment: 10 pages, 5 figure

    Measurements of the electric and magnetic form factors of the neutron for time-like momentum transfer

    Full text link
    We present the first measurements of the electric and magnetic form factors of the neutron in the time-like (positive q2q^2) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e+enˉne^+e^- \rightarrow \bar{n}n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb1^{-1} in total at twelve center-of-mass energies between s=2.02.95\sqrt{s} = 2.0 - 2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at s=2.3935\sqrt{s} = 2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable space-like (negative q2q^2) region of four-momentum transfer. The electromagnetic form factor ratio RemGE/GMR_{\rm em}\equiv |G_E|/|G_M| is within the uncertainties close to unity. We compare our result on GE|G_E| and GM|G_M| to recent model predictions, and the measurements in the space-like region to test the analyticity of electromagnetic form factors.Comment: main paper: 9 pages, 6 figures, 3 tables; supplement: 9 pages, 28 table

    Updated measurements of the M1 transition ψ(3686)γηc(2S)\psi(3686) \to \gamma \eta_{c}(2S) with ηc(2S)KKˉπ\eta_{c}(2S) \to K \bar{K} \pi

    Full text link
    Based on a data sample of (27.08±0.14)×108 ψ(3686)(27.08 \pm 0.14 ) \times 10^8~\psi(3686) events collected with the BESIII detector at the BEPCII collider, the M1 transition ψ(3686)γηc(2S)\psi(3686) \to \gamma \eta_{c}(2S) with ηc(2S)KKˉπ\eta_{c}(2S) \to K\bar{K}\pi is studied, where KKˉπK\bar{K}\pi is K+Kπ0K^{+} K^{-} \pi^{0} or KS0K±πK_{S}^{0}K^{\pm}\pi^{\mp}. The mass and width of the ηc(2S)\eta_{c}(2S) are measured to be (3637.8±0.8(stat)±0.2(syst))(3637.8 \pm 0.8 (\rm {stat}) \pm 0.2 (\rm {syst})) MeV/c2c^{2} and (10.5±1.7(stat)±3.5(syst))(10.5 \pm 1.7 (\rm {stat}) \pm 3.5 (\rm {syst})) MeV, respectively. The product branching fraction B(ψ(3686)γηc(2S))×B(ηc(2S)KKˉπ)\mathcal{B}\left(\psi(3686) \rightarrow \gamma \eta_{c}(2 S)\right) \times \mathcal{B}(\eta_{c}(2 S) \rightarrow K \bar{K} \pi) is determined to be (0.97±0.06(stat)±0.09(syst))×105(0.97 \pm 0.06 (\rm {stat}) \pm 0.09 (\rm {syst})) \times 10^{-5}. Using BR(ηc(2S)KKˉπ)=(1.860.49+0.68)%\mathcal{BR}(\eta_{c}(2S)\to K\bar{K}\pi)=(1.86^{+0.68}_{-0.49})\%, we obtain the branching fraction of the radiative transition to be BR(ψ(3686)γηc(2S))=(5.2±0.3(stat)±0.5(syst)1.4+1.9(extr))×104\mathcal{BR}(\psi(3686) \to \gamma \eta_{c}(2S)) = (5.2 \pm 0.3 (\rm {stat}) \pm 0.5 (\rm {syst}) ^{+1.9}_{-1.4} (extr)) \times 10^{-4}, where the third uncertainty is due to the quoted BR(ηc(2S)KKˉπ)\mathcal{BR}(\eta_{c}(2S) \to K\bar{K}\pi)

    Production of doubly-charged Δ\Delta baryon in e+ee^{+}e^{-} annihilation at energies from 2.3094 to 2.6464 GeV

    Full text link
    The processes e+eΔ++Δˉe^{+}e^{-} \to \Delta^{++}\bar{\Delta}^{--} and e+eΔ++pˉπ+c.c.e^{+}e^{-}\to \Delta^{++} \bar{p} \pi^{-} + c.c. are studied for the first time with 179 pb1179~{\rm pb}^{-1} of e+ee^{+}e^{-} annihilation data collected with the BESIII detector at center-of-mass energies from 2.30942.3094 GeV to 2.64642.6464 GeV. No significant signal for the e+eΔ++Δˉe^{+}e^{-}\to \Delta^{++}\bar{\Delta}^{--} process is observed and the upper limit of the Born cross section is estimated at each energy point. For the process e+eΔ++pˉπ+c.c.e^{+}e^{-} \to \Delta^{++} \bar{p} \pi^{-} + c.c., a significant signal is observed at center-of-mass energies near 2.6454 GeV and the corresponding Born cross section is reported.Comment: 10 pages, 4 figure

    Study of ee to eta phi at center-of-mass energies from 3.773 to 4.600 GeV

    Full text link
    We present a study of the process ee to phi eta using data samples collected with the BESIII detector corresponding to an integrated luminosity of 15.03 fb1^{-1} at 23 center-of-mass energies from 3.773 to 4.600 GeV. The Born cross sections are measured at each energy and a coherent fit to cross-section lineshape is performed using a Breit-Wigner parametrization to search for charmonium-like vector states. No significant signals of the Y(4230)Y(4230) and Y(4360)Y(4360) resonances are observed.Comment: 11 pages, 5(8) figure

    Measurement of the C ⁣PC\!P-even fraction of D0K+Kπ+πD^0\to K^+K^-\pi^+\pi^-

    Full text link
    A determination of the C ⁣PC\!P-even fraction F+F_+ in the decay D0K+Kπ+πD^0 \to K^+K^-\pi^+\pi^- is presented. Using 2.932.93 fb1^{-1} of e+eψ(3770)DDˉe^+e^-\to\psi(3770)\to D\bar{D} data collected by the BESIII detector, one charm meson is reconstructed in the signal mode and the other in a C ⁣PC\!P eigenstate or the decay DKS,L0π+πD\to K_{S, L}^0\pi^+\pi^-. Analysis of the relative rates of these double-tagged events yields the result F+=0.730±0.037±0.021F_+ = 0.730 \pm 0.037 \pm 0.021, where the first uncertainty is statistical and the second is systematic. This is the first model-independent measurement of F+F_+ in D0K+Kπ+πD^0 \to K^+K^-\pi^+\pi^- decays.Comment: 13 pages, 5 figure

    Measurement of the e+eKS0KL0π0e^{+}e^{-} \to K_{S}^{0} K_{L}^{0} \pi^{0} cross sections from s=\sqrt{s}= 2.000 to 3.080 GeV

    Full text link
    Based on e+ee^{+}e^{-} collision data collected at center-of-mass energies from 2.000 to 3.080 GeV by the BESIII detector at the BEPCII collider, a partial wave analysis is performed for the process e+eKS0KL0π0e^{+}e^{-}\to K_{S}^{0} K_{L}^{0} \pi^{0}. The results allow the Born cross sections of the process e+eKS0KL0π0e^{+}e^{-}\to K_{S}^{0} K_{L}^{0} \pi^{0}, as well as its subprocesses e+eK(892)0Kˉe^{+}e^{-}\to K^{*}(892)^{0}\bar{K} and K2(1430)0KˉK^{*}_{2}(1430)^{0}\bar{K} to be measured. The Born cross sections for e+eKS0KL0π0e^{+}e^{-}\to K_{S}^{0} K_{L}^{0}\pi^{0} are consistent with previous measurements by BaBar and SND, but with substantially improved precision. The Born cross section lineshape of the process e+eK(892)0Kˉe^{+}e^{-}\to K^{*}(892)^{0}\bar{K} is consistent with a vector meson state around 2.2 GeV with a statistical significance of 3.2σ\sigma. A Breit-Wigner fit determines its mass as MY=(2164.1±9.6±3.1) MeV/c2M_Y=(2164.1\pm9.6\pm3.1)~{\rm{MeV}}/c^{2} and its width as ΓY=(32.4±21.1±1.5) MeV\Gamma_{Y}=(32.4\pm21.1\pm1.5)~\rm{MeV}, where the first uncertainties are statistical and the second ones are systematic, respectively

    Observation and branching fraction measurement of the decay J ⁣/ ⁣ψpˉΣ+KS0+c.c.J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} + c.c.

    Full text link
    The first observation of the decays J ⁣/ ⁣ψpˉΣ+KS0J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} and J ⁣/ ⁣ψpΣˉKS0J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0} is reported using (10087±44)×106(10087\pm44)\times10^{6} J ⁣/ ⁣ψJ\!/\!\psi events recorded by the BESIII detector at the BEPCII storage ring. The branching fractions of each channel are determined to be B(J ⁣/ ⁣ψpˉΣ+KS0)=(1.361±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0})=(1.361 \pm 0.006 \pm 0.025) \times 10^{-4} and B(J ⁣/ ⁣ψpΣˉKS0)=(1.352±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0})=(1.352 \pm 0.006 \pm 0.025) \times 10^{-4}. The combined result is B(J ⁣/ ⁣ψpˉΣ+KS0+c.c.)=(2.725±0.009±0.050)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} +c.c.)=(2.725 \pm 0.009 \pm 0.050) \times 10^{-4}, where the first uncertainty is statistical and the second systematic. The results presented are in good agreement with the branching fractions of the isospin partner decay J ⁣/ ⁣ψpKΣˉ0+c.c.J\!/\!\psi \rightarrow p K^- \bar\Sigma^0 + c.c.

    A coupled-channel analysis of the X(3872)X(3872) lineshape with BESIII data

    Full text link
    We perform a study of the X(3872)X(3872) lineshape using the data samples of e+eγX(3872)e^+e^-\to\gamma X(3872), X(3872)D0Dˉ0π0X(3872)\to D^0\bar{D}^0 \pi^0 and π+πJ/ψ\pi^+\pi^- J/\psi collected with the BESIII detector. The effects of the coupled-channels and the off-shell D0D^{*0} are included in the parameterization of the lineshape. The lineshape mass parameter is obtained to be MX=(3871.63±0.130.05+0.06)M_{X}=(3871.63\pm 0.13^{+0.06}_{-0.05}) MeV. Two poles are found on the first and second Riemann sheets corresponding to the D0Dˉ0D^{*0}\bar{D}^0 branch cut. The pole location on the first sheet is much closer to the D0Dˉ0D^{*0}\bar{D}^0 threshold than the other, and is determined to be 7.04±0.150.08+0.077.04\pm0.15^{+0.07}_{-0.08} MeV above the D0Dˉ0π0D^0\bar{D}^0\pi^0 threshold with an imaginary part 0.19±0.080.19+0.14-0.19\pm0.08^{+0.14}_{-0.19} MeV
    corecore