9,219 research outputs found
Why does the US dominate university league tables?
According to Academic Ranking of World Universities, the world’s top 500 universities are owned by only 38 countries, with the US alone having 157 of them. This paper investigates the socioeconomic determinants of the wide performance gap between countries and whether the US’s dominance in the league table is largely due to its economic power or something else. It is found that a large amount of cross country variation in university performance can be explained by just four socioeconomic factors: income, population size, R&D spending, and the national language. It is also found that conditional on the resources that it has, the US is actually underperforming by about 4 to 10 percent.
Simultaneous Measurement for Strain and Temperature Using Fiber Bragg Gratings and Multimode Fibers
An all-fiber sensor capable of simultaneous measurement of temperature and strain is newly presented. The sensing head is formed by a fiber Bragg grating combined with a section of multimode fiber that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. The strain and temperature coefficients of multimode fibers vary with the core sizes and materials. This feature can be used to improve the strain and temperature resolution by suitably choosing the multimode fiber. For a 10 pm wavelength resolution, a resolution of 9.21 μ∈ in strain and 0.26°C in temperature can be achieved
Temperature- and Phase-Independent Lateral Force Sensor based on a Core-Offset Multi-Mode Fiber Interferometer
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators
Recommended from our members
Prompting Fab Yeast Surface Display Efficiency by ER Retention and Molecular Chaperon Co-expression.
For antibody discovery and engineering, yeast surface display (YSD) of antigen-binding fragments (Fabs) and coupled fluorescence activated cell sorting (FACS) provide intact paratopic conformations and quantitative analysis at the monoclonal level, and thus holding great promises for numerous applications. Using anti-TNFα mAbs Infliximab, Adalimumab, and its variants as model Fabs, this study systematically characterized complementary approaches for the optimization of Fab YSD. Results suggested that by using divergent promoter GAL1-GAL10 and endoplasmic reticulum (ER) signal peptides for co-expression of light chain and heavy chain-Aga2 fusion, assembled Fabs were functionally displayed on yeast cell surface with sigmoidal binding responses toward TNFα. Co-expression of a Hsp70 family molecular chaperone Kar2p and/or protein-disulfide isomerase (Pdi1p) significantly improved efficiency of functional display (defined as the ratio of cells displaying functional Fab over cells displaying assembled Fab). Moreover, fusing ER retention sequences (ERSs) with light chain also enhanced Fab display quality at the expense of display quantity, and the degree of improvements was correlated with the strength of ERSs and was more significant for Infliximab than Adalimumab. The feasibility of affinity maturation was further demonstrated by isolating a high affinity Fab clone from 1:103 or 1:105 spiked libraries
Core-Offset Small-Core-Diameter Dispersion Compensation Fiber Interferometer and its Applications in Fiber Sensors
We propose a core-offset small core diameter dispersion compensation fiber (DCF) interferometer and investigate its applications in fiber sensors. If the transverse force is applied to a short section of the DCF, there is almost no crosstalk on the transmission spectrum between the extinction ratio variation induced by the transverse force and the wavelength shift caused by the longitudinal strain or ambient temperature, which can be applied to measure both transverse and longitudinal strain, or both transverse strain and temperature, simultaneously. The proposed sensors have the advantages of low cost, simple and compact structure, and good reproducibility
Intrinsic Electrical Transport Properties of Monolayer Silicene and MoS2 from First Principles
The electron-phonon interaction and related transport properties are
investigated in monolayer silicene and MoS2 by using a density functional
theory calculation combined with a full-band Monte Carlo analysis. In the case
of silicene, the results illustrate that the out-of-plane acoustic phonon mode
may play the dominant role unlike its close relative - graphene. The small
energy of this phonon mode, originating from the weak sp2 bonding between Si
atoms, contributes to the high scattering rate and significant degradation in
electron transport. In MoS2, the longitudinal acoustic phonons show the
strongest interaction with electrons. The key factor in this material appears
to be the Q valleys located between the {\Gamma} and K points in the first
Brillouin zone as they introduce additional intervalley scattering. The
analysis also reveals the potential impact of extrinsic screening by other
carriers and/or adjacent materials. Subsequent decrease in the actual
scattering rate can be drastic, warranting careful consideration. Finally, the
effective deformation potential constants are extracted for all relevant
intrinsic electron-phonon scattering processes in both materials
- …
