332,980 research outputs found
Sensitivity of neutron radii in the sigma_-$ rho_ coupling corrections in relativistic mean field theory
We study the sensitivity of the neutron skin thickness, , in a Pb
nucleus to the addition of nucleon-sigma-rho coupling corrections to a
selection (PK1, NL3, S271, Z271) of interactions in relativistic mean field
model. The PK1 and NL3 effective interactions lead to a minimum value of =
0.16 fm in comparison with the original value of = 0.28 fm. The S271 and
Z271 effective interactions yield even smaller values of = 0.11 fm, which
are similar to those for nonrelativistic mean field models. A precise
measurement of the neutron radius, and therefore , in Pb will place
an important constraint on both relativistic and nonrelativistic mean field
models. We also study the correlation between the radius of a 1.4 solar-mass
neutron star and .Comment: 40 pages 13 figures. to be published in Physical Review
Dynamical decoupling of superconducting qubits
We show that two superconducting qubits interacting via a fixed transversal
coupling can be decoupled by appropriately-designed microwave feld excitations
applied to each qubit. This technique is useful for removing the effects of
spurious interactions in a quantum processor. We also simulate the case of a
qubit coupled to a two-level system (TLS) present in the insulating layer of
the Josephson junction of the qubit. Finally, we discuss the qubit-TLS problem
in the context of dispersive measurements, where the qubit is coupled to a
resonator.Comment: 4 figures, 6 page
Existence results for mean field equations
Let be an annulus. We prove that the mean field equation
-\Delta\psi=\frac{e\sp{-\beta\psi}}{\int\sb{\Omega}e\sp{-\beta\psi}} admits
a solution with zero boundary for . This is a
supercritical case for the Moser-Trudinger inequality.Comment: Filling a gap in the argument and adding 2 referrence
A search algorithm for a class of optimal finite-precision controller realization problems with saddle points
With game theory, we review the optimal digital controller realization problems that maximize a finite word length (FWL) closed-loop stability measure. For a large class of these optimal FWL controller realization problems which have saddle points, a minimax-based search algorithm is derived for finding a global optimal solution. The algorithm consists of two stages. In the first stage, the closed form of a transformation set is constructed which contains global optimal solutions. In the second stage, a subgradient approach searches this transformation set to obtain a global optimal solution. This algorithm does not suffer from the usual drawbacks associated with using direct numerical optimization methods to tackle these FWL realization problems. Furthermore, for a small class of optimal FWL controller realization problems which have no saddle point, the proposed algorithm also provides useful information to help solve them
Synthesis and control of generalised dynamically substructured systems
The experimental technique for testing engineering systems via the method of dynamic substructuring is receiving significant global interest, for example in the fields of large-scale structural, aerospace, and automotive system testing. Dynamically substructured systems (DSSs) enable full-size, critical components of a complete system to be physically tested in real-time, within a laboratory environment, while the remainder of the system is modelled numerically. The intention is that the combined physical-numerical DSS behaves as if it were the complete (or emulated) system.In an ideal mechanical DSS, for example, perfect synchronization of displacements and forces at the interfaces between the numerical and physical components (or substructures) is required. Hence, a key design feature of successful DSS systems is the high fidelity of the control action. Equally, a DSS controller must be able to cope with non-linear, time-varying, and uncertain parameters within the physical substructure dynamics.The main purpose of this paper is to present a generalized DSS framework, together with associated linear and adaptive control strategies, that are specifically tailored to achieve high synchronization performance. The initial studies of this problem, as described in an earlier paper by Stoten and Hyde, are therefore continued by generalizing both the DSS dynamics and the control strategies to include (a) a number of newly defined modes of operation and (b) multivariable dynamics. In addition, comparative implementation and simulation studies are included, based upon the DSS testing of a mechanical system (a planar quasi-motorcycle rig), which was specifically designed to highlight the main features of this research. The comparative studies show that excellent DSS control can be achieved, especially with the addition of an adaptive component to the controller, despite significant changes to the physical substructure dynamics
Electronic Structures of SiC Nanoribbons
Electronic structures of SiC nanoribbons have been studied by spin-polarized
density functional calculations. The armchair nanoribbons are nonmagnetic
semiconductor, while the zigzag nanoribbons are magnetic metal. The spin
polarization in zigzag SiC nanoribbons is originated from the unpaired
electrons localized on the ribbon edges. Interestingly, the zigzag nanoribbons
narrower than 4 nm present half-metallic behavior. Without the aid of
external field or chemical modification, the metal-free half-metallicity
predicted for narrow SiC zigzag nanoribbons opens a facile way for nanomaterial
spintronics applications.Comment: 10 pages, 5 figure
- ā¦