162,236 research outputs found

    An example of optimal field cut in lattice gauge perturbation theory

    Full text link
    We discuss the weak coupling expansion of a one plaquette SU(2) lattice gauge theory. We show that the conventional perturbative series for the partition function has a zero radius of convergence and is asymptotic. The average plaquette is discontinuous at g^2=0. However, the fact that SU(2) is compact provides a perturbative sum that converges toward the correct answer for positive g^2. This alternate methods amounts to introducing a specific coupling dependent field cut, that turns the coefficients into g-dependent quantities. Generalizing to an arbitrary field cut, we obtain a regular power series with a finite radius of convergence. At any order in the modified perturbative procedure, and for a given coupling, it is possible to find at least one (and sometimes two) values of the field cut that provide the exact answer. This optimal field cut can be determined approximately using the strong coupling expansion. This allows us to interpolate accurately between the weak and strong coupling regions. We discuss the extension of the method to lattice gauge theory on a D-dimensional cubic lattice.Comment: 9 pages, 11 figs., uses revtex4, modified presentatio

    Towards First-principles Electrochemistry

    Full text link
    Chemisorbed molecules at a fuel cell electrode are a very sensitive probe of the surrounding electrochemical environment, and one that can be accurately monitored with different spectroscopic techniques. We develop a comprehensive electrochemical model to study molecular chemisorption at either constant charge or fixed applied voltage, and calculate from first principles the voltage dependence of vibrational frequencies -- the vibrational Stark effect -- for CO adsorbed on close-packed platinum electrodes. The predicted vibrational Stark slopes are found to be in very good agreement with experimental electrochemical spectroscopy data, thereby resolving previous controversies in the quantitative interpretation of in-situ experiments and elucidating the relation between canonical and grand-canonicaldescriptions of vibrational surface phenomena.Comment: 10 pages, 2 figure

    Rate of Convergence in Nonlinear Hartree Dynamics with Factorized Initial Data

    Full text link
    The mean field dynamics of an NN-particle weekly interacting Boson system can be described by the nonlinear Hartree equation. In this paper, we present estimates on the 1/N rate of convergence of many-body Schr\"{o}dinger dynamics to the one-body nonlinear Hartree dynamics with factorized initial data with two-body interaction potential VV in L3(R3)+L∞(R3)L^3 (\mathbb{R}^3)+ L^{\infty} (\mathbb{R}^3).Comment: AMS LaTex, 21 page

    Current dependent fluctuations in a Bi2_2Sr2_2CuO6+δ_{6+\delta} thin film

    Full text link
    The current dependence of the excess conductivity is measured up to ≃3Tc\simeq 3 T_c for a Bi2_2Sr2_2CuO6+δ_{6+\delta} thin film, as a function of doping. It is found to be anomalously sensitive to the transport current and to behave as a universal function of T/TcT/T_c in the whole doping range. We discuss these results in the perspective of a granular superconductor with a gapless-like behavior

    Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel

    Get PDF
    In the present investigation, a detailed mechanical and electrochemical properties of multiple-layer laser clad 316L stainless steel (from the powders produced by gas atomized route) has been carried out. Multiple-layer laser cladding of 316L stainless steel has been conducted using a diode laser. The mechanical property (rmcrohardness) of the fabricated product has been evaluated using a microhardness testing machine and correlated with the process parameters. The electrochemical property, mainly pitting corrosion resistance of the fabricated layer corresponding to maximum microhardness (in a 3.56% NaCl solution) has been evaluated using standard potentiodynamic polarization testing. The microhardness of the laser assisted fabricated layers was found to vary from 170 to 278 VHN, increased with decrease in applied power density and increase in scan speed and was higher than that of conventionally processed 316L (155 VHN). The superior microhardness value is attributed to grain refinement associated with laser melting and rapid solidification. The critical potential to pit formation (E-PP1) was measured to be 550 mV saturated calomel electrode (SCE) and superior to the conventionally processed 316L stainless steel (445 mV (SCE)). (c) 2005 Elsevier B.V. All rights reserved
    • …
    corecore