330,815 research outputs found
On quantum vertex algebras and their modules
We give a survey on the developments in a certain theory of quantum vertex
algebras, including a conceptual construction of quantum vertex algebras and
their modules and a connection of double Yangians and Zamolodchikov-Faddeev
algebras with quantum vertex algebras.Comment: 18 pages; contribution to the proceedings of the conference in honor
of Professor Geoffrey Maso
Ground-state phase structure of the spin- anisotropic planar pyrochlore
We study the zero-temperature ground-state (GS) properties of the
spin- anisotropic planar pyrochlore, using the coupled cluster
method (CCM) implemented to high orders of approximation. The system comprises
a -- model on the checkerboard lattice, with isotropic Heisenberg
interactions of strength between all nearest-neighbour pairs of spins
on the square lattice, and of strength between half of the
next-nearest-neighbour pairs (in the checkerboard pattern). We calculate
results for the GS energy and average local GS on-site magnetization, using
various antiferromagnetic classical ground states as CCM model states. We also
give results for the susceptibility of one of these states against the
formation of crossed-dimer valence-bond crystalline (CDVBC) ordering. The
complete GS phase diagram is presented for arbitrary values of the frustration
parameter , and when each of the exchange couplings
can take either sign
Transverse Magnetic Susceptibility of a Frustrated Spin- ---- Heisenberg Antiferromagnet on a Bilayer Honeycomb Lattice
We use the coupled cluster method (CCM) to study a frustrated
spin- ---- Heisenberg antiferromagnet
on a bilayer honeycomb lattice with stacking. Both nearest-neighbor (NN)
and frustrating next-nearest-neighbor antiferromagnetic (AFM) exchange
interactions are present in each layer, with respective exchange coupling
constants and . The two layers are
coupled with NN AFM exchanges with coupling strength . We calculate to high orders of approximation within the CCM
the zero-field transverse magnetic susceptibility in the N\'eel phase.
We thus obtain an accurate estimate of the full boundary of the N\'eel phase in
the plane for the zero-temperature quantum phase diagram. We
demonstrate explicitly that the phase boundary derived from is fully
consistent with that obtained from the vanishing of the N\'eel magnetic order
parameter. We thus conclude that at all points along the N\'eel phase boundary
quasiclassical magnetic order gives way to a nonclassical paramagnetic phase
with a nonzero energy gap. The N\'eel phase boundary exhibits a marked
reentrant behavior, which we discuss in detail
A high-order study of the quantum critical behavior of a frustrated spin- antiferromagnet on a stacked honeycomb bilayer
We study a frustrated spin-
------ Heisenberg antiferromagnet on an
-stacked bilayer honeycomb lattice. In each layer we consider
nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor
antiferromagnetic (AFM) exchange couplings , , and ,
respectively. The two layers are coupled with an AFM NN exchange coupling
. The model is studied for arbitrary values of
along the line that includes the most
highly frustrated point at , where the classical ground
state is macroscopically degenerate. The coupled cluster method is used at high
orders of approximation to calculate the magnetic order parameter and the
triplet spin gap. We are thereby able to give an accurate description of the
quantum phase diagram of the model in the plane in the window , . This includes two AFM phases with
N\'eel and striped order, and an intermediate gapped paramagnetic phase that
exhibits various forms of valence-bond crystalline order. We obtain accurate
estimations of the two phase boundaries, , or
equivalently, , with (N\'eel) and 2
(striped). The two boundaries exhibit an "avoided crossing" behavior with both
curves being reentrant
Collinear antiferromagnetic phases of a frustrated spin- ---- Heisenberg model on an -stacked bilayer honeycomb lattice
The zero-temperature quantum phase diagram of the spin-
---- model on an -stacked bilayer honeycomb
lattice is investigated using the coupled cluster method (CCM). The model
comprises two monolayers in each of which the spins, residing on
honeycomb-lattice sites, interact via both nearest-neighbor (NN) and
frustrating next-nearest-neighbor isotropic antiferromagnetic (AFM) Heisenberg
exchange iteractions, with respective strengths and . The two layers are coupled via a comparable Heisenberg
exchange interaction between NN interlayer pairs, with a strength
. The complete phase boundaries of two
quasiclassical collinear AFM phases, namely the N\'{e}el and N\'{e}el-II
phases, are calculated in the half-plane with .
Whereas on each monolayer in the N\'{e}el state all NN pairs of spins are
antiparallel, in the N\'{e}el-II state NN pairs of spins on zigzag chains along
one of the three equivalent honeycomb-lattice directions are antiparallel,
while NN interchain spins are parallel. We calculate directly in the
thermodynamic (infinite-lattice) limit both the magnetic order parameter
and the excitation energy from the ground state to the
lowest-lying excited state (where is the total
component of spin for the system as a whole, and where the collinear ordering
lies along the direction) for both quasiclassical states used (separately)
as the CCM model state, on top of which the multispin quantum correlations are
then calculated to high orders () in a systematic series of
approximations involving -spin clusters. The sole approximation made is then
to extrapolate the sequences of th-order results for and to the
exact limit,
Spin-gap study of the spin- -- model on the triangular lattice
We use the coupled cluster method implemented at high orders of approximation
to study the spin- -- model on the triangular
lattice with Heisenberg interactions between nearest-neighbour and
next-nearest-neighbour pairs of spins, with coupling strengths and
, respectively. In the window we find that the 3-sublattice 120 N\'{e}el-ordered and
2-sublattice 180 stripe-ordered antiferromagnetic states form the
stable ground-state phases in the regions
and , respectively. The spin-triplet gap is
found to vanish over essentially the entire region of the intermediate phase
Ground-state phases of the spin-1 -- Heisenberg antiferromagnet on the honeycomb lattice
We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg
antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange
coupling and frustrating next-nearest-neighbor coupling , using the coupled cluster method implemented to high orders
of approximation, and based on model states with different forms of classical
magnetic order. For each we calculate directly in the bulk thermodynamic limit
both ground-state low-energy parameters (including the energy per spin,
magnetic order parameter, spin stiffness coefficient, and zero-field uniform
transverse magnetic susceptibility) and their generalized susceptibilities to
various forms of valence-bond crystalline (VBC) order, as well as the energy
gap to the lowest-lying spin-triplet excitation. In the range
we find evidence for four distinct phases. Two of these are quasiclassical
phases with antiferromagnetic long-range order, one with 2-sublattice N\'{e}el
order for , and another with 4-sublattice
N\'{e}el-II order for . Two different
paramagnetic phases are found to exist in the intermediate region. Over the
range we find a gapless
phase with no discernible magnetic order, which is a strong candidate for being
a quantum spin liquid, while over the range we find a gapped phase, which is most likely a lattice nematic
with staggered dimer VBC order that breaks the lattice rotational symmetry
The IT performance evaluation in the construction industry
To date there has been limited published work in
the construction management and engineering
literature that has provided empirical evidence to
demonstrate that IT can improve organizational
performance. Without an explicit understanding
about how IT can be effectively used to improve
organizational performance, its justification will
remain to be weak for managers. To ensure the
continuous increase in IT based applications in the
construction industry, sufficient evidence has to be
provided for management in various professions of
the construction industry to evaluate, allocate and
utilize appropriate IT systems. In an attempt to
explore the relationship between IT and
productivity, an empirical investigation of 60
Professional Consulting Firms (PCF) from the
Hong Kong construction industry was undertaken.
A model for determining the organizational
productivity of IT is proposed, and the
methodology used to test the model is described.
The findings are analyzed and a cross-profession
comparison of the results indicated the differences
in the use of IT. The research findings are discussed
with similarities being drawn. The limitations of the
research are then presented and discussed. The
implications of the findings and conclusions then
fully presented
- …
