1,557 research outputs found

    Comparison of the Electronic Structures of Two Non-cuprate Layered Transition Metal Oxide Superconductors

    Full text link
    Comparison is made of the electronic structure of the little-studied layered transition metal oxide LiNbO2_2 with that of Nax_xCoO2_2, which has attracted tremendous interest since superconductivity was discovered in its hydrate. Although the active transition metal dd states are quite different due to different crystal fields and band filling, both systems show a strong change of electronic structure with changes in the distance between the transition metal ion layer and the oxygen layers. The niobate is unusual in having a large second-neighbor hopping amplitude, and a nearest neighbor hopping amplitude that is sensitive to the Nb-O separation. Lix_xNbO2_2 also presents the attractive simplicity of a single band triangular lattice system with variable carrier concentration that is superconducting.Comment: 5 pages, 3 embedded figures (Proceedings in third Hiroshima international workshop

    Growth and Decay in Life-Like Cellular Automata

    Full text link
    We propose a four-way classification of two-dimensional semi-totalistic cellular automata that is different than Wolfram's, based on two questions with yes-or-no answers: do there exist patterns that eventually escape any finite bounding box placed around them? And do there exist patterns that die out completely? If both of these conditions are true, then a cellular automaton rule is likely to support spaceships, small patterns that move and that form the building blocks of many of the more complex patterns that are known for Life. If one or both of these conditions is not true, then there may still be phenomena of interest supported by the given cellular automaton rule, but we will have to look harder for them. Although our classification is very crude, we argue that it is more objective than Wolfram's (due to the greater ease of determining a rigorous answer to these questions), more predictive (as we can classify large groups of rules without observing them individually), and more accurate in focusing attention on rules likely to support patterns with complex behavior. We support these assertions by surveying a number of known cellular automaton rules.Comment: 30 pages, 23 figure

    Probing generalized parton distributions in pi N -> l+ l- N

    Full text link
    We study the exclusive reactions pi- p -> l+ l- n and pi+ n -> l+ l- p$ in view of possible future experiments with high-intensity pion beams. For large invariant mass of the lepton pair l+ l- and small squared momentum transfer to the nucleon these are hard-scattering processes providing access to generalized parton distributions. We estimate the cross section for these reactions, explore their connection with the pion form factor, and discuss the role they can play in improving our understanding of the relevant reaction mechanisms.Comment: 13 pages, 5 figure

    Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple

    Incremental Grid-like Layout Using Soft and Hard Constraints

    Full text link
    We explore various techniques to incorporate grid-like layout conventions into a force-directed, constraint-based graph layout framework. In doing so we are able to provide high-quality layout---with predominantly axis-aligned edges---that is more flexible than previous grid-like layout methods and which can capture layout conventions in notations such as SBGN (Systems Biology Graphical Notation). Furthermore, the layout is easily able to respect user-defined constraints and adapt to interaction in online systems and diagram editors such as Dunnart.Comment: Accepted to Graph Drawing 201

    The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare

    Full text link
    Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the pre-cursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active region's magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca II H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ~ 8degrees towards the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ~7degrees. This behaviour of the field vector may provide a physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure

    Quantum Pumping and Quantized Magnetoresistance in a Hall Bar

    Full text link
    We show how a dc current can be generated in a Hall bar without applying a bias voltage. The Hall resistance RHR_H that corresponds to this pumped current is quantized, just as in the usual integer quantum Hall effect (IQHE). In contrast with the IQHE, however, the longitudinal resistance RxxR_{xx} does not vanish on the plateaus, but equals the Hall resistance. We propose an experimental geometry to measure the pumped current and verify the predicted behavior of RHR_H and RxxR_{xx}.Comment: RevTeX, 3 figure

    Modified f(G) gravity models with curvature-matter coupling

    Full text link
    A modified f(G) gravity model with coupling between matter and geometry is proposed, which is described by the product of the Lagrange density of the matter and an arbitrary function of the Gauss-Bonnet term. The field equations and the equations of motion corresponding to this model show the non-conservation of the energy-momentum tensor, the presence of an extra-force acting on test particles and the non-geodesic motion. Moreover, the energy conditions and the stability criterion at de Sitter point in the modified f(G) gravity models with curvature-matter coupling are derived, which can degenerate to the well-known energy conditions in general relativity. Furthermore, in order to get some insight on the meaning of these energy conditions, we apply them to the specific models of f(G) gravity and the corresponding constraints on the models are given. In addition, the conditions and the candidate for late-time cosmic accelerated expansion in the modified f(G) gravity are studied by means of conditions of power-law expansion and the equation of state of matter less than -1/ 3 .Comment: 13 pages, 4 figure

    Properties of the Bose glass phase in irradiated superconductors near the matching field

    Full text link
    Structural and transport properties of interacting localized flux lines in the Bose glass phase of irradiated superconductors are studied by means of Monte Carlo simulations near the matching field B_Phi, where the densities of vortices and columnar defects are equal. For a completely random columnar pin distribution in the xy-plane transverse to the magnetic field, our results show that the repulsive vortex interactions destroy the Mott insulator phase which was predicted to occur at B = B_Phi. On the other hand, for ratios of the penetration depth to average defect distance lambda/d <= 1, characteristic remnants of the Mott insulator singularities remain visible in experimentally accessible quantities as the magnetization, the bulk modulus, and the magnetization relaxation, when B is varied near B_Phi. For spatially more regular disorder, e.g., a nearly triangular defect distribution, we find that the Mott insulator phase can survive up to considerably large interaction range \lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include

    1/f Noise in Electron Glasses

    Full text link
    We show that 1/f noise is produced in a 3D electron glass by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures. The low frequency noise spectrum goes as \omega^{-\alpha} with \alpha slightly larger than 1. This result together with the temperature dependence of \alpha and the noise amplitude are in good agreement with the recent experiments. These results hold true both with a flat, noninteracting density of states and with a density of states that includes Coulomb interactions. In the latter case, the density of states has a Coulomb gap that fills in with increasing temperature. For a large Coulomb gap width, this density of states gives a dc conductivity with a hopping exponent of approximately 0.75 which has been observed in recent experiments. For a small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in Phys. Rev.
    corecore