276,361 research outputs found
Classification for the universal scaling of N\'eel temperature and staggered magnetization density of three-dimensional dimerized spin-1/2 antiferromagnets
Inspired by the recently theoretical development relevant to the experimental
data of TlCuCl, particularly those associated with the universal scaling
between the N\'eel temperature and the staggered magnetization density
, we carry a detailed investigation of 3-dimensional (3D) dimerized
quantum antiferromagnets using the first principles quantum Monte Carlo
calculations. The motivation behind our study is to better understand the
microscopic effects on these scaling relations of and , hence to
shed some light on some of the observed inconsistency between the theoretical
and the experimental results. Remarkably, for the considered 3D dimerized
models, we find that the established universal scaling relations can indeed be
categorized by the amount of stronger antiferromagnetic couplings connected to
a lattice site. Convincing numerical evidence is provided to support this
conjecture. The relevance of the outcomes presented here to the experiments of
TlCuCl is briefly discussed as well.Comment: 9 pages, 27 figure
A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed
persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853.
Here, we present the results of the analysis of recent INTEGRAL observations,
aimed at assessing the long-term variability of the hard X-ray emission, and
thus the stability of the accretion state. We confirm that the source behaves
as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS
J12270-4859 hosts a neutron star in a propeller state, a state we investigate
in detail, developing a theoretical model to reproduce the associated X-ray and
gamma-ray properties. This model can be understood as being of a more general
nature, representing a viable alternative by which LMXBs can appear as
gamma-ray sources. In particular, this may apply to the case of millisecond
pulsars performing a transition from a state powered by the rotation of their
magnetic field, to a state powered by matter in-fall, such as that recently
observed from the transitional pulsar PSR J1023+0038. While the surface
magnetic field of a typical NS in a LMXB is lower by more than four orders of
magnitude than the much more intense fields of neutron stars accompanying
high-mass binaries, the radius at which the matter in-flow is truncated in a
NS-LMXB system is much lower. The magnetic field at the magnetospheric
interface is then orders of magnitude larger at this interface, and as
consequence, so is the power to accelerate electrons. We demonstrate that the
cooling of the accelerated electron population takes place mainly through
synchrotron interaction with the magnetic field permeating the interface, and
through inverse Compton losses due to the interaction between the electrons and
the synchrotron photons they emit. We found that self-synchrotron Compton
processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References
update
X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme
Recently a (X(1812)) state with a mass near the threshold of
and has been observed by the BES collaboration in decay. It has been suggested that it is a
state. If it is true, this state fits in a mixing scheme based on quarkonia,
glueball and hybrid (QGH) very nicely where five physical states are predicted.
Together with the known , , , and
states, X(1812) completes the five members in this family. Using known
experimental data on these particles we determine the ranges of the mixing
parameters and predict decay properties for X(1812). We also discuss some
features which may be able to distinguish between four-quark and hybrid mixing
schemes.Comment: 15 pages, 2 figures, 3 table
Domain Wall and Periodic Solutions of Coupled phi4 Models in an External Field
Coupled double well (phi4) one-dimensional potentials abound in both
condensed matter physics and field theory. Here we provide an exhaustive set of
exact periodic solutions of a coupled model in an external field in
terms of elliptic functions (domain wall arrays) and obtain single domain wall
solutions in specific limits. We also calculate the energy and interaction
between solitons for various solutions. Both topological and nontopological
(e.g. some pulse-like solutions in the presence of a conjugate field) domain
walls are obtained. We relate some of these solutions to the recently observed
magnetic domain walls in certain multiferroic materials and also in the field
theory context wherever possible. Discrete analogs of these coupled models,
relevant for structural transitions on a lattice, are also considered.Comment: 35 pages, no figures (J. Math. Phys. 2006
Controlling the topological sector of magnetic solitons in exfoliated CrNbS crystals
We investigate manifestations of topological order in monoaxial helimagnet
CrNbS by performing transport measurements on ultra-thin crystals.
Upon sweeping the magnetic field perpendicularly to the helical axis, crystals
thicker than one helix pitch (48 nm) but much thinner than the magnetic domain
size (1 m) are found to exhibit sharp and hysteretic resistance
jumps. We show that these phenomena originate from transitions between
topological sectors with different number of magnetic solitons. This is
confirmed by measurements on crystals thinner than 48 nm --in which the
topological sector cannot change-- that do not exhibit any jump or hysteresis.
Our results show the ability to deterministically control the topological
sector of finite-size CrNbS and to detect inter-sector transitions
by transport measurements.Comment: 7 pages, 8 figure
Extracting Energy from a Black Hole through Its Disk
When some magnetic field lines connect a Kerr black hole with a disk rotating
around it, energy and angular momentum are transferred between them. If the
black hole rotates faster than the disk, for a thin Keplerian
disk, then energy and angular momentum are extracted from the black hole and
transferred to the disk ( is the mass and is the angular momentum
of the black hole). This way the energy originating in the black hole may be
radiated away by the disk.
The total amount of energy that can be extracted from the black hole spun
down from to by a thin Keplerian disk is
. This is larger than which can be
extracted by the Blandford-Znajek mechanism.Comment: 8 pages, 2 figure
- …
