150,749 research outputs found

    Non-fragile H∞ control with randomly occurring gain variations, distributed delays and channel fadings

    Get PDF
    This study is concerned with the non-fragile H∞ control problem for a class of discrete-time systems subject to randomly occurring gain variations (ROGVs), channel fadings and infinite-distributed delays. A new stochastic phenomenon (ROGVs), which is governed by a sequence of random variables with a certain probabilistic distribution, is put forward to better reflect the reality of the randomly occurring fluctuation of controller gains implemented in networked environments. A modified stochastic Rice fading model is then exploited to account for both channel fadings and random time-delays in a unified representation. The channel coefficients are a set of mutually independent random variables which abide by any (not necessarily Gaussian) probability density function on [0, 1]. Attention is focused on the analysis and design of a non-fragile H∞ outputfeedback controller such that the closed-loop control system is stochastically stable with a prescribed H∞ performance. Through intensive stochastic analysis, sufficient conditions are established for the desired stochastic stability and H∞ disturbance attenuation, and the addressed non-fragile control problem is then recast as a convex optimisation problem solvable via the semidefinite programme method. An example is finally provided to demonstrate the effectiveness of the proposed design method

    Disk Accretion onto Magnetized Neutron Stars: The Inner Disk Radius and Fastness Parameter

    Get PDF
    It is well known that the accretion disk around a magnetized compact star can penetrate inside the magnetospheric boundary, so the magnetospheric radius \ro does not represent the true inner edge \rin of the disk; but controversies exist in the literature concerning the relation between \ro and \rin. In the model of Ghosh & Lamb, the width of the boundary layer is given by \delta=\ro-\rin\ll\ro, or \rin\simeq\ro, while Li & Wickramasinghe recently argued that \rin could be significantly smaller than \ro in the case of a slow rotator. Here we show that if the star is able to absorb the angular momentum of disk plasma at \ro, appropriate for binary X-ray pulsars, the inner disk radius can be constrained by 0.8\lsim \rin/\ro\lsim 1, and the star reaches spin equilibrium with a relatively large value of the fastness parameter (0.70.95\sim 0.7-0.95). For accreting neutron stars in low-mass X-ray binaries (LMXBs), \ro is generally close to the stellar radius \rs so that the toroidal field cannot transfer the spin-up torque efficiently to the star. In this case the critical fastness parameter becomes smaller, but \rin is still near \ro.Comment: 7 pages, 2 figures, to appear in Ap

    Infrared spectroscopy of the charge ordering transition in Na0.5_{0.5}CoO2_2

    Full text link
    We report infrared spectra of a Na0.5_{0.5}CoO2_2 single crystal which exhibits a sharp metal-insulator transition near 50 K due to the formation of charge ordering. In comparison with x=0.7 and 0.85 compounds, we found that the spectral weight associated with the conducting carriers at high temperature increases systematically with decreasing Na contents. The charge ordering transition only affects the optical spectra below 1000 cm1^{-1}. A hump near 800 cm1^{-1} develops below 100 K, which is accompanied by the appearance of new lattice modes as well as the strong anti-resonance feature of phonon spectra. At lower temperature TcoT_{co}, an optical gap develops at the magnitude of 2Δ3.5kBTco\Delta\approx3.5k_BT_{co}, evidencing an insulating charge density wave ground state. Our experimental results and analysis unequivocally point towards the importance of charge ordering instability and strong electron-phonon interaction in Nax_xCoO2_2 system.Comment: 4 pages, 3 figure

    Static and Dynamic Spectroscopy of (Al,Ga)As/GaAs Microdisk Lasers with Interface Fluctuation Quantum Dots

    Full text link
    We have studied the steady state and dynamic optical properties of semiconductor microdisk lasers whose active region contains interface fluctuation quantum dots in GaAs/(Ga,Al)As quantum wells. Steady-state measurements of the stimulated emission via whispering gallery modes yield a quality factor Q5600Q \sim 5600 and a coupling constant β0.09\beta \sim 0.09. The broad gain spectrum produces mode hopping between spectrally adjacent whispering gallery modes as a function of temperature and excitation power. Time- and energy-resolved photoluminescence measurements show that the emission rise and decay rates increase significantly with excitation power. Marked differences are observed between the radiative decay rates in processed and unprocessed samples.Comment: To appear in Phys. Rev.
    corecore