2,362 research outputs found
A Review of Vacuum Degradation Research and the Experimental Outgassing Research of the Core Material- Pu foam on Vacuum Insulation Panels
AbstractVacuum Insulation Panels(VIPs) have been regarded as a super thermal insulation material with a thermal resistance of about 5-8 times higher than that of equally thick conventional polyurethane boards. In this paper, the researches on factors influencing interior pressure in VIPs, including gas and water vapor permeation through the barrier and outgassing of the core materials, were reviewed respectively. Following this, aiming at the outgassing from open cell PU foam, the specific outgassing rate of the core material is tested not only at room temperature but also at low and high temperatures by an orifice known-conductance method
Universal Cellular Automata and Class 4
Wolfram has provided a qualitative classification of cellular automata(CA)
rules according to which, there exits a class of CA rules (called Class 4)
which exhibit complex pattern formation and long-lived dynamical activity (long
transients). These properties of Class 4 CA's has led to the conjecture that
Class 4 rules are Universal Turing machines i.e. they are bases for
computational universality. We describe an embedding of a ``small'' universal
Turing machine due to Minsky, into a cellular automaton rule-table. This
produces a collection of cellular automata, all of which are
computationally universal. However, we observe that these rules are distributed
amongst the various Wolfram classes. More precisely, we show that the
identification of the Wolfram class depends crucially on the set of initial
conditions used to simulate the given CA. This work, among others, indicates
that a description of complex systems and information dynamics may need a new
framework for non-equilibrium statistical mechanics.Comment: Latex, 10 pages, 5 figures uuencode
A study of the effect of open biomass burning aerosol on rainfall event over Malaysia by using EOF analysis.
Significant biomass burning aerosols resulted from biomass burning activities from Sumatra and Kalimantan Island transported to Malaysia every year from August to October by the southeast monsoon. These transboundary haze changes the precipitation pattern by aerosol interaction with radiation and cloud which affects the solar radiation budget and cloud condensation nuclei properties. In this work, empirical orthogonal function (EOF) was used to assess the effect of biomass burning aerosol on rainfall pattern over Malaysia from both a spatial and a temporal perspective. Over Peninsular Malaysia, regional rainfall activities tend to be suppressed by concentrated biomass burning aerosols and produce another heavy rain over the downwind areas after 30-60 days (60 days) under highly (less) populated condition. Similar precipitation pattern has been indicated over Sarawak and Sabah where biomass burning aerosols suppress rainfall in the southwestern area while leads to a more intensified rainfall event in the northeast area with 30-60 days (60 days) interval under highly (less) populated condition
Fermion Propagators in Type II Fivebrane Backgrounds
The fermion propagators in the fivebrane background of type II superstring
theories are calculated. The propagator can be obtained by explicitly
evaluating the transition amplitude between two specific NS-R boundary states
by the propagator operator in the non-trivial world-sheet conformal field
theory for the fivebrane background. The propagator in the field theory limit
can be obtained by using point boundary states. We can explicitly investigate
the lowest lying fermion states propagating in the non-trivial ten-dimensional
space-time of the fivebrane background: M^6 x W_k^(4), where W_k^(4) is the
group manifold of SU(2)_k x U(1). The half of the original supersymmetry is
spontaneously broken, and the space-time Lorentz symmetry SO(9,1) reduces to
SO(5,1) in SO(5,1) x SO(4) \subset SO(9,1) by the fivebrane background. We find
that there are no propagations of SO(4) (local Lorentz) spinor fields, which is
consistent with the arguments on the fermion zero-modes in the fivebrane
background of low-energy type II supergravity theories.Comment: 15 page
Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy
The giant magnetoimpedance effect in composite wires consising of a
non-magnetic inner core and soft magnetic shell is studied theoretically. It is
assumed that the magnetic shell has a helical anisotropy. The current and field
distributions in the composite wire are found by means of a simultaneous
solution of Maxwell equations and the Landau-Lifshitz equation. The expressions
for the diagonal and off-diagonal impedance are obtained for low and high
frequencies. The dependences of the impedance on the anisotropy axis angle and
the shell thickness are analyzed. Maximum field sensitivity is shown to
correspond to the case of the circular anisotropy in the magnetic shell. It is
demonstrated that the optimum shell thickness to obtain maximum impedance ratio
is equal to the effective skin depth in the mahnetic material.Comment: 23 pages, 7 figure
photoproduction near threshold
In this work, the meson photoproduction near threshold is
studied in the quark model framework. A pseudovector effective Lagrangian is
introduced for the coupling and the newly published data from
the SAPHIR Collaboration provide good constraints to this parameter.
Corrections of order for the electromagnetic interaction vertex
are taken into account, which produce corrections of order to the
transition amplitude for . Some low-lying
resonances, , , and are found to
have significant contributions. A bump structure around 2 GeV
is found arising from the terms in the harmonic oscillator basis. The
beam polarization asymmetries are predicted and can be tested against the
forthcoming data from GRAAL.Comment: Revtex, 3 eps figures, 1 table; Resubmitted to Phys. Rev.
Statefinder diagnostic in a torsion cosmology
We apply the statefinder diagnostic to the torsion cosmology, in which an
accounting for the accelerated universe is considered in term of a
Riemann-Cartan geometry: dynamic scalar torsion. We find that there are some
typical characteristic of the evolution of statefinder parameters for the
torsion cosmology that can be distinguished from the other cosmological models.
Furthermore, we also show that statefinder diagnostic has a direct bearing on
the critical points. The statefinder diagnostic divides the torsion parameter
into differential ranges, which is in keeping with the requirement of
dynamical analysis. In addition, we fit the scalar torsion model to ESSENCE
supernovae data and give the best fit values of the model parameters.Comment: 18 pages, 15 figures, accepted paper in JCA
Phenomenological covariant approach to gravity
We covariantly modify the Einstein-Hilbert action such that the modified
action perturbatively resolves the flat rotational velocity curve of the spiral
galaxies and gives rise to the Tully-Fisher relation, and dynamically generates
the cosmological constant. This modification requires introducing just a single
new universal parameter.Comment: v6: a mistake in deriving the equation of the cosmological constant
corrected, refs adde
Theory of unitarity bounds and low energy form factors
We present a general formalism for deriving bounds on the shape parameters of
the weak and electromagnetic form factors using as input correlators calculated
from perturbative QCD, and exploiting analyticity and unitarity. The values
resulting from the symmetries of QCD at low energies or from lattice
calculations at special points inside the analyticity domain can beincluded in
an exact way. We write down the general solution of the corresponding Meiman
problem for an arbitrary number of interior constraints and the integral
equations that allow one to include the phase of the form factor along a part
of the unitarity cut. A formalism that includes the phase and some information
on the modulus along a part of the cut is also given. For illustration we
present constraints on the slope and curvature of the K_l3 scalar form factor
and discuss our findings in some detail. The techniques are useful for checking
the consistency of various inputs and for controlling the parameterizations of
the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version
accepted by EPJA in Tools section; sentences and figures improve
- …