226,493 research outputs found
Convolutional compressed sensing using deterministic sequences
This is the author's accepted manuscript (with working title "Semi-universal convolutional compressed sensing using (nearly) perfect sequences"). The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, a new class of orthogonal circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Many examples of the sequences are investigated, particularly the Frank-Zadoff-Chu (FZC) sequence, the m-sequence and the Golay sequence. A salient feature of the proposed sensing matrices is that they can not only handle sparse signals in the time domain, but also those in the frequency and/or or discrete-cosine transform (DCT) domain
Process feasibility study in support of silicon material, task 1
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon
Application of an optimization method to high performance propeller designs
The application of an optimization method to determine the propeller blade twist distribution which maximizes propeller efficiency is presented. The optimization employs a previously developed method which has been improved to include the effects of blade drag, camber and thickness. Before the optimization portion of the computer code is used, comparisons of calculated propeller efficiencies and power coefficients are made with experimental data for one NACA propeller at Mach numbers in the range of 0.24 to 0.50 and another NACA propeller at a Mach number of 0.71 to validate the propeller aerodynamic analysis portion of the computer code. Then comparisons of calculated propeller efficiencies for the optimized and the original propellers show the benefits of the optimization method in improving propeller performance. This method can be applied to the aerodynamic design of propellers having straight, swept, or nonplanar propeller blades
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
Process feasibility study in support of silicon material task 1
Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials
Economics of polysilicon processes
Techniques are being developed to provide lower cost polysilicon material for solar cells. Existing technology which normally provides semiconductor industry polysilicon material is undergoing changes and also being used to provide polysilicon material for solar cells. Economics of new and existing technologies are presented for producing polysilicon. The economics are primarily based on the preliminary process design of a plant producing 1,000 metric tons/year of silicon. The polysilicon processes include: Siemen's process (hydrogen reduction of trichlorosilane); Union Carbide process (silane decomposition); and Hemlock Semiconductor process (hydrogen reduction of dichlorosilane). The economics include cost estimates of capital investment and product cost to produce polysilicon via the technology. Sensitivity analysis results are also presented to disclose the effect of major paramentes such as utilities, labor, raw materials and capital investment
Evaporative segregation in 80 percent Ni-20 percent Cr and 60 percent Fe-40 percent Ni alloys
The phenomenon of evaporative segregation in binary alloys has been investigated through a study of some experimental evaporation data relating to the Ni-Cr and Ni-Fr systems. In normal evaporation it is assumed that (1) the evaporating alloy is always homogeneous, (2) the vapor is instantly removed, and (3) the alloy follows Raoult's law. The solutions of the evaporation equations for the two most important cases are presented and experimental data are analyzed with these equations. The difference between observed and calculated values of evaporation constants lies within one order of magnitude. This is surprising because of the major assumptions stated above. Experimental results have shown that the evaporation time and final solute concentration are logarithmically related, further supporting our evaporation equations. It is further shown that neglecting the nonlogarithmic term in these evaporation equations may introduce considerable errors in the analysis
Characterizing Operations Preserving Separability Measures via Linear Preserver Problems
We use classical results from the theory of linear preserver problems to
characterize operators that send the set of pure states with Schmidt rank no
greater than k back into itself, extending known results characterizing
operators that send separable pure states to separable pure states. We also
provide a new proof of an analogous statement in the multipartite setting. We
use these results to develop a bipartite version of a classical result about
the structure of maps that preserve rank-1 operators and then characterize the
isometries for two families of norms that have recently been studied in quantum
information theory. We see in particular that for k at least 2 the operator
norms induced by states with Schmidt rank k are invariant only under local
unitaries, the swap operator and the transpose map. However, in the k = 1 case
there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3
simplified and clarifie
- …