254,336 research outputs found
Property-Based Testing - The ProTest Project
The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis.
The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang
Enhanced heterogeneous nucleation on oxides in Al alloys by intensive shearing
Oxides, in liquid aluminium alloys, can cause severe difficulties during casting, contribute to the formation of cast defects and degrade the mechanical properties of cast components. In this paper, microstructural characteristics of naturally occurring oxides in the melts of commercial purity aluminium and Al-Mg binary alloys have been investigated. They are characterised by densely populated oxide particles within liquid oxide films. With intensive shearing, the particle agglomerates are dispersed into uniformly distributed individual particles. It was found that with intensive melt shearing, grain refinement of α-Al can be achieved by the dispersed oxide particles. The smaller lattice misfit between the oxide particles and the α-Al phase is characterised by a well defined crystallographic orientation relationship. And the mechanisms of grain refinement are discussed.The EPSR
Incoherent excitation and switching of spin states in exciton-polariton condensates
We investigate, theoretically and numerically, the spin dynamics of a
two-component exciton-polariton condensate created and sustained by
non-resonant spin-polarized optical pumping of a semiconductor microcavity.
Using the open-dissipative mean-field model, we show that the existence of well
defined phase-locked steady states of the condensate may lead to efficient
switching and control of spin (polarization) states with a non-resonant
excitation. Spatially inhomogeneous pulsed excitations can cause symmetry
breaking in the pseudo-spin structure of the condensate and lead to formation
of non-trivial spin textures. Our model is universally applicable to two weakly
coupled polariton condensates, and therefore can also describe the behaviour of
condensate populations and phases in 'double-well' type potentials
Uranium on uranium collisions at relativistic energies
Deformation and orientation effects on compression, elliptic flow and
particle production in uranium on uranium collisions (UU) at relativistic
energies are studied within the transport model ART. The density compression in
tip-tip UU collisions is found to be about 30% higher and lasts approximately
50% longer than in body-body or spherical UU reactions. The body-body UU
collisions have the unique feature that the nucleon elliptic flow is the
highest in the most central collisions and remain a constant throughout the
reaction. We point out that the tip-tip UU collisions are more probable to
create the QGP at AGS and SPS energies while the body-body UU collisions are
more useful for studying properties of the QGP at higher energies.Comment: 8 pages + 4 figure
The Design for a Nanoscale Single-Photon Spin Splitter
We propose using the effective spin-orbit interaction of light in
Bragg-modulated cylindrical waveguides for the effcient separation of spin-up
and spin-down photons emitted by a single photon emitter. Due to the spin and
directional dependence of photonic stopbands in the waveguides, spin-up (down)
photon propagation in the negative (positive) direction along the waveguide
axis is blocked while the same photon freely propagates in the opposite
direction.Comment: 5 pages, 3 figure
Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions
Within a relativistic transport (ART) model for heavy-ion collisions, we show
that the recently observed characteristic change from out-of-plane to in-plane
elliptic flow of protons in mid-central Au+Au collisions as the incident energy
increases is consistent with the calculated results using a stiff nuclear
equation of state (K=380 MeV). We have also studied the elliptic flow of pions
and the transverse momentum dependence of both the nucleon and pion elliptic
flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752
Globular clusters (GCs) are emerging as a new class of gamma-ray emitters,
thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now,
eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the
stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs
out of all known GCs that have not been studied in details before. In this
paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC
6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and
NGC 6541, in which gamma-rays were found within the GC tidal radius. With one
of the highest metallicity among all GCs in the Milky Way, the gamma-ray
luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs.
In addition, we confirm a previous report of significant gamma-ray emitting
region next to NGC 6441. We briefly discuss the observed offset of gamma-rays
from some GC cores. The increasing number of known gamma-ray GCs at distances
out to ~10 kpc is important for us to understand the gamma-ray emitting
mechanism and provides an alternative probe to the underlying millisecond
pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
Fluctuation limits of strongly degenerate branching systems
Functional limit theorems for scaled fluctuations of occupation time
processes of a sequence of critical branching particle systems in with
anisotropic space motions and strongly degenerated splitting abilities are
proved in the cases of critical and intermediate dimensions. The results show
that the limit processes are constant measure-valued Wienner processes with
degenerated temporal and simple spatial structures.Comment: 15 page
QCD corrections to the t-->H+b decay within the minimal supersymmetric standard model
I present the contribution of gluinos and scalar quarks to the decay rate of
the top quark into a charged Higgs boson and a bottom quark within the minimal
supersymmetric standard model, including the mixing of the scalar partners of
the left- and right-handed top quark. I show that for certain values of the
supersymmetric parameters the standard QCD loop corrections to this decay mode
are diminished or enhanced by several 10 per cent. I show that not only a small
value of 3 GeV for the gluino mass (small mass window) but also much larger
values of several hundreds of GeV's have a non-neglible effect on this decay
rate, against general belief. Last but not least, if the ratio of the vacuum
expectation values of the Higgs bosons are taken in the limit of I
obtain a drastic enhancement due to a \ dependence in the couplings.Comment: UQAM-PHE-94/01, 6 pages, plain tex, 4 figures not included, available
under request via mail or fa
- …