30 research outputs found

    A Blockchain-based Information Model of Cross-Border E-Commerce

    Get PDF
    Blockchain technology provides us a new tool to solve the product traceability problem in supply chain. This in-progress paper focus on the cross-border e-commerce context, to develop blockchain-based information models for products and transactions. A general blockchain-based product information traceability framework is introduced. The framework is applied in cross-border e-commerce context. We also designed a multiple chain structure and the data management model following the framework. In the future works, we will develop the key distribution, anti-counterfeiting and other approaches following this framework, and also verify them with real data and simulation

    Understanding Members’ Active Participation in a DAO: An Empirical Study on Steemit

    Get PDF
    One of Blockchain’s great potential is to enable the decentralized autonomous organizations (DAOs), whose organizational structure and operational mechanism fundamentally distinct from traditional organizations. This revolutionary nature of DAOs will definitely influence peoples’ behavior. Steemit is an online community like Reddit, but it’s a DAO enabled by STEEM blockchain. This nature makes Steemit fans both users and owners. As users, people can enjoy social capital from using Steemit, just like using any other social media. As owners, people can get some economic incentives by earning and holding Steem Power, and Steem Power can be seen a kind of share capital. This paper attempts to explore the participation behavior of people in the Steemit community from two perspectives—social capital and share capital. Social feedback and economic feedback received by members also have an impact on participation behavior

    Evodiamine induces extrinsic and intrinsic apoptosis of ovarian cancer cells via the mitogen-activated protein kinase/phosphatidylinositol-3-kinase/protein kinase B signaling pathways

    Get PDF
    AbstractObjectiveTo explore the effects of evodiamine on ovarian cancer cells and the mechanisms underlying such effects.MethodsHuman ovarian cancer cells HO-8910PM were treated with evodiamine at 0, 1.25, 2.5, and 5 μM for 1-4 d. 3-(4,5-Dimethiylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the growth inhibition rate of evodiamine-treated HO-8910PM cells. The cell cycle was observed via propidium iodide (PI) staining. Apoptosis induction was assessed via Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) double staining assay. To verify the mechanism of apoptosis, caspase-dependent apoptotic pathway-related protein was detected by Western blot analysis. The expression levels of mitogen-activated protein kinase (MAPK) and/or phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway-related proteins were also investigated.ResultsEvodiamine significantly inhibited the proliferation of HO-8910PM cells in a dose- and time-dependent manner. Evodiamine induced G2/M arrest with an increase of cyclin B1 level, and promoted cell apoptosis with a decrease of B cell lymphoma/lewkmia-2 (Bcl-2) and an increase of Bcl-2-associated X protein (Bax) level. In addition, evodiamine treatment led to the activation of caspase-8, caspase-9, and caspase-3 and the cleavage of poly (ADP-ribose)-polymerase (PARP). Evodiamine targeted the MAPK and/or PI3K/Akt pathways by reducing the expression and activity of PI3K, Akt, and extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the activity of p38 MAPK.ConclusionEvodiamine can inhibit the growth of ovarian cancer cells by G2/M arrest and intrinsic and extrinsic apoptosis. In addition, evodiamine-induced PI3K/Akt, ERK1/2 MAPK, and p38 MAPK signaling may be involved in cell death

    Hyper-Relational Knowledge Graph Neural Network for Next POI

    Full text link
    With the advancement of mobile technology, Point of Interest (POI) recommendation systems in Location-based Social Networks (LBSN) have brought numerous benefits to both users and companies. Many existing works employ Knowledge Graph (KG) to alleviate the data sparsity issue in LBSN. These approaches primarily focus on modeling the pair-wise relations in LBSN to enrich the semantics and thereby relieve the data sparsity issue. However, existing approaches seldom consider the hyper-relations in LBSN, such as the mobility relation (a 3-ary relation: user-POI-time). This makes the model hard to exploit the semantics accurately. In addition, prior works overlook the rich structural information inherent in KG, which consists of higher-order relations and can further alleviate the impact of data sparsity.To this end, we propose a Hyper-Relational Knowledge Graph Neural Network (HKGNN) model. In HKGNN, a Hyper-Relational Knowledge Graph (HKG) that models the LBSN data is constructed to maintain and exploit the rich semantics of hyper-relations. Then we proposed a Hypergraph Neural Network to utilize the structural information of HKG in a cohesive way. In addition, a self-attention network is used to leverage sequential information and make personalized recommendations. Furthermore, side information, essential in reducing data sparsity by providing background knowledge of POIs, is not fully utilized in current methods. In light of this, we extended the current dataset with available side information to further lessen the impact of data sparsity. Results of experiments on four real-world LBSN datasets demonstrate the effectiveness of our approach compared to existing state-of-the-art methods

    Impact of Pesticide Type and Emulsion Fat Content on the Bioaccessibility of Pesticides in Natural Products

    Get PDF
    There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There is, however, potential for them to also raise the bioavailability of undesirable substances found in these products, such as pesticides. In this research, we studied the impact of excipient nanoemulsions on the bioaccessibility of pesticide-treated tomatoes. We hypothesized that the propensity for nanoemulsions to raise pesticide bioaccessibility would depend on the polarity of the pesticide molecules. Bendiocarb, parathion, and chlorpyrifos were therefore selected because they have Log P values of 1.7, 3.8, and 5.3, respectively. Nanoemulsions with different oil contents (0%, 4%, and 8%) were fabricated to study their impact on pesticide uptake. In the absence of oil, the bioaccessibility increased with increasing pesticide polarity (decreasing Log P): bendiocarb (92.9%) \u3e parathion (16.4%) \u3e chlorpyrifos (2.8%). Bendiocarb bioaccessibility did not depend on the oil content of the nanoemulsions, which was attributed to its relatively high water-solubility. Conversely, the bioaccessibility of the more hydrophobic pesticides (parathion and chlorpyrifos) increased with increasing oil content. For instance, for chlorpyrifos, the bioaccessibility was 2.8%, 47.0%, and 70.7% at 0%, 4%, and 8% oil content, respectively. Our findings have repercussions for the utilization of nanoemulsions as excipient foods in products that may have high levels of undesirable non-polar substances, such as pesticides

    Ultrafast-and-Ultralight ConvNet-Based Intelligent Monitoring System for Diagnosing Early-Stage Mpox Anytime and Anywhere

    Full text link
    Due to the lack of more efficient diagnostic tools for monkeypox, its spread remains unchecked, presenting a formidable challenge to global health. While the high efficacy of deep learning models for monkeypox diagnosis has been demonstrated in related studies, the overlook of inference speed, the parameter size and diagnosis performance for early-stage monkeypox renders the models inapplicable in real-world settings. To address these challenges, we proposed an ultrafast and ultralight network named Fast-MpoxNet. Fast-MpoxNet possesses only 0.27M parameters and can process input images at 68 frames per second (FPS) on the CPU. To counteract the diagnostic performance limitation brought about by the small model capacity, it integrates the attention-based feature fusion module and the multiple auxiliary losses enhancement strategy for better detecting subtle image changes and optimizing weights. Using transfer learning and five-fold cross-validation, Fast-MpoxNet achieves 94.26% Accuracy on the Mpox dataset. Notably, its recall for early-stage monkeypox achieves 93.65%. By adopting data augmentation, our model's Accuracy rises to 98.40% and attains a Practicality Score (A new metric for measuring model practicality in real-time diagnosis application) of 0.80. We also developed an application system named Mpox-AISM V2 for both personal computers and mobile phones. Mpox-AISM V2 features ultrafast responses, offline functionality, and easy deployment, enabling accurate and real-time diagnosis for both the public and individuals in various real-world settings, especially in populous settings during the outbreak. Our work could potentially mitigate future monkeypox outbreak and illuminate a fresh paradigm for developing real-time diagnostic tools in the healthcare field

    Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability

    Get PDF
    Graphene-based nanocomposites attract many attentions because of holding promise for many applications. In this work, multishelled NiO hollow spheres decorated by graphene nanosheets nanocomposite are successfully fabricated. The multishelled NiO microspheres are uniformly distributed on the surface of graphene, which is helpful for preventing aggregation of as-reduced graphene sheets. Furthermore, the NiO/graphene nanocomposite shows much higher electrochemical performance with a reversible capacity of 261.5 mAh g−1 at a current density of 200 mA g−1 after 100 cycles tripled compared with that of pristine multishelled NiO hollow spheres, implying the potential application in modern science and technology

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Clinical significance of the detection of serum IgG4 and IgG4/IgG ratio in patients with thyroid-associated ophthalmopathy

    No full text
    To evaluate the clinical significance of detecting serum IgG4 and the IgG4/IgG ratio in patients with thyroid-associated ophthalmopathy (TAO) and to explore whether high serum IgG4 levels and the IgG4/IgG ratio are associated with the severity and activity of TAO, we retrospectively assessed the records of 78 TAO patients and 32 controls collected in our hospital from July 2020 to July 2022. The TAO patients were divided into TAO inactive and TAO active phase groups according to the clinical activity score (CAS), and we evaluated the association between the serum IgG4 levels, the IgG4/IgG ratio, and the clinical data of the participants. The levels of IgG4 significantly increased in the TAO active group compared to those in the inactive and control groups (P < 0.05). Additionally, the number of patients with increased IgG4 levels (≥135 mg/dL) in the TAO active group was markedly higher than that in the inactive and control groups (P < 0.05). The IgG4/IgG ratio was also significantly enhanced in the TAO active group compared to the inactive and control groups (P < 0.05). CAS was identified as an independent factor influencing IgG4 levels in patients with TAO. The levels of serum IgG4, as well as the IgG4/IgG ratio, were significantly increased in some patients with active TAO, and they were related to the CAS, suggesting that the pathogenesis of TAO may be heterogeneous
    corecore