362 research outputs found

    A self-adaptive trust region method for the extended linear complementarity problems

    Get PDF
    summary:By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions

    A dynamic programming approach for generalized nearly isotonic optimization

    Full text link
    Shape restricted statistical estimation problems have been extensively studied, with many important practical applications in signal processing, bioinformatics, and machine learning. In this paper, we propose and study a generalized nearly isotonic optimization (GNIO) model, which recovers, as special cases, many classic problems in shape constrained statistical regression, such as isotonic regression, nearly isotonic regression and unimodal regression problems. We develop an efficient and easy-to-implement dynamic programming algorithm for solving the proposed model whose recursion nature is carefully uncovered and exploited. For special â„“2\ell_2-GNIO problems, implementation details and the optimal O(n){\cal O}(n) running time analysis of our algorithm are discussed. Numerical experiments, including the comparison between our approach and the powerful commercial solver Gurobi for solving â„“1\ell_1-GNIO and â„“2\ell_2-GNIO problems, on both simulated and real data sets are presented to demonstrate the high efficiency and robustness of our proposed algorithm in solving large scale GNIO problems

    The research on the intrinsic and extrinsic motivation of Chinese modern transformation(Focusing on 1980s)

    Get PDF

    Zhang Taiyan in the construction of Chinese Modern Literature

    Get PDF

    Association between novel PLCE1variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck

    Get PDF
    BACKGROUND: Phospholipase C epsilon 1 (PLCE1) (an effector of Ras) belonging to the phospholipase family plays crucial roles in carcinogenesis and progression of several cancers, including squamous cell carcinoma of the head and neck (SCCHN). A single nucleotide polymorphism (SNP, rs2274223) in PLCE1 has been identified as a novel susceptibility locus in genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) that share similar risk factors with SCCHN. Therefore, we investigated the association between potentially functional SNPs in PLCE1 and susceptibility to SCCHN. METHODS: We genotyped three potentially functional SNPs (rs2274223A/G, rs3203713A/G and rs11599672T/G) of PLCE1 in 1,098 SCCHN patients and 1,090 controls matched by age and sex in a non-Hispanic white population. RESULTS: Although none of three SNPs was alone significantly associated with overall risk of SCCHN, their combined effects of risk alleles (rs2274223G, rs3203713G and rs11599672G) were found to be associated with risk of SCCHN in a locus-dose effect manner (P(trend )= 0.046), particularly for non-oropharyngeal tumors (P(trend )= 0.017); specifically, rs2274223 was associated with a significantly increased risk (AG vs. AA: adjusted OR = 1.29, 95% CI = 1.01-1.64; AG/GG vs. AA: adjusted OR = 1.30, 95% CI = 1.03-1.64), while rs11599672 was associated with a significantly decreased risk (GG vs. TT: adjusted OR = 0.54, 95% CI = 0.34-0.86; TG/GG vs. TT: adjusted OR = 0.76, 95% CI = 0.61-0.95). CONCLUSIONS: Our findings suggest that PLCE1 variants may have an effect on risk of SCCHN associated with tobacco and alcohol exposure, particularly for those tumors arising at non-oropharyngeal sites. These findings, although need to be validated by larger studies, are consistent with those in esophageal and gastric cancers

    FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum

    Get PDF
    PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289

    Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer.

    Get PDF
    Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C\u3eT and 16286C\u3eT and two in the promoter region, 45996G\u3eT and 46346C\u3eA. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites

    Genetic variants of p27 and p21 as predictors for risk of second primary malignancy in patients with index squamous cell carcinoma of head and neck

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell cycle deregulation is common in human cancer, and alterations of <it>p27 </it>and <it>p21</it>, two critical cell cycle regulators, have been implicated in the development of many human malignancies. Therefore, we hypothesize that <it>p27 </it>T109G polymorphism individually or in combination with <it>p21 </it>(C98A and C70T) polymorphisms modifies risk of second primary malignancy (SPM) in patients with index squamous cell carcinoma of head and neck (SCCHN).</p> <p>Methods</p> <p>A cohort of 1,292 patients with index SCCHN was recruited between May 1995 and January 2007 at the M.D. Anderson Cancer Center and followed for SPM occurrence. Patients were genotyped for the three polymorphisms. A log-rank test and Cox proportional hazards models were used to compare SPM-free survival and SPM risk.</p> <p>Results</p> <p>We found that patients with <it>p27 </it>109 TG/GG, <it>p21 </it>98 CA/AA and <it>p21 </it>70 CT/TT variant genotypes had a worse SPM-free survival and an increased SPM risk than those with the corresponding <it>p27</it>109 TT, <it>p21 </it>98 CC, and <it>p21 </it>70 CC common genotypes, respectively. After combining the three polymorphisms, there was a trend for significantly increased SPM risk with increasing number of the variant genotypes (<it>P</it><sub>trend </sub>= 0.0002). Moreover, patients with the variant genotypes had an approximately 2.4-fold significantly increased risk for SPM compared with those with no variant genotypes (HR, 2.4, 95% CI, 1.6-3.6).</p> <p>Conclusions</p> <p>These results suggest that <it>p27 </it>T109G polymorphism individually or in combination with <it>p21 </it>(C98A and C70T) polymorphisms increases risk of SPM in patients with index SCCHN.</p
    • …
    corecore