124 research outputs found

    Polarization State Manipulation of Electromagnetic Waves with Metamaterials and Its Applications in Nanophotonics

    Get PDF
    Polarization state is an important characteristic of electromagnetic waves. The arbitrary control of the polarization state of such wave has attracted great interest in the scientific community because of the wide range of modern optical applications that such control can afford. Recent advances in metamaterials provide an alternative method of realizing arbitrary manipulation of polarization state of electromagnetic waves in nanoscale via ultrathin, miniaturized, and easily integrable designs. In this chapter, we give a review of recent developments on polarization state manipulation of electromagnetic waves in metamaterials and discuss their applications in nanophotonics, such as polarization converter, wavefront controller, information coding, and so on

    Claudin-1/4 as directly target gene of HIF-1α can feedback regulating HIF-1α by PI3K-AKT-mTOR and impact the proliferation of esophageal squamous cell though Rho GTPase and p-JNK pathway

    Get PDF
    Immunohistochemical microarray comprising 80 patients with esophageal squamous cell carcinoma (ESCC) and discovered that the expression of CLDN1 and CLDN4 were significantly higher in cancer tissues compared to para-cancerous tissues. Furthermore, CLDN4 significantly affected the overall survival of cancer patients. When two ESCC cell lines (TE1, KYSE410) were exposed to hypoxia (0.1% O2), CLDN1/4 was shown to influence the occurrence and development of esophageal cancer. Compared with the control culture group, the cancer cells cultured under hypoxic conditions exhibited obvious changes in CLDN1 and CLDN4 expression at both the mRNA and protein levels. Through genetic intervention and Chip, we found that HIF-1α could directly regulate the expression of CLDN1 and CLDN4 in cancer cells. Hypoxia can affect the proliferation and apoptosis of cancer cells by regulating the PI3K-Akt-mTOR pathway. Molecular analysis further revealed that CLDN1 and CLDN4 can participate in the regulation process and had a feedback regulatory effect on HIF-1α expression in cancer cells. In vitro cellular experiments and vivo experiments in nude mice further revealed that changes in CLDN4 expression in cancer cells could affect the proliferation of cancer cells via regulation of Rho GTP and p-JNK pathway. Whether CLDN4 can be target for the treatment of ESCC needs further research

    Continual Exposure to Cigarette Smoke Extracts Induces Tumor-Like Transformation of Human Nontumor Bronchial Epithelial Cells in a Microfluidic Chip

    Get PDF
    IntroductionHeavy cigarette smoking-related chronic obstructive pulmonary disease is an independent risk factor for lung squamous carcinoma. However, the mechanisms underlying the malignant transformation of bronchial epithelial cells are unclear.MethodsIn our study, human tumor-adjacent bronchial epithelial cells were obtained from 10 cases with smoking-related chronic obstructive pulmonary disease and lung squamous carcinoma and cultured in an established microfluidic chip for continual exposure to cigarette smoke extracts (CSE) to investigate the potential tumor-like transformation and mechanisms. The integrated microfluidic chip included upstream concentration gradient generator and downstream cell culture chambers supplied by flowing medium containing different concentrations of CSE.ResultsOur results showed that continual exposure to low doses of CSE promoted cell proliferation whereas to high doses of CSE triggered cell apoptosis. Continual exposure to CSE promoted reactive oxygen species production in human epithelial cells in a dose-dependent manner. More importantly, continual exposure to low dose of CSE promoted the epithelial-to-mesenchymal transition process and anchorage-independent growth, and increased chromosome instability in bronchial epithelial cells, accompanied by activating the GRP78, NF-κB, and PI3K pathways.ConclusionsThe established microfluidic chip is suitable for primary culture of human tumor-adjacent bronchial epithelial cells to investigate the malignant transformation. Continual exposure to low doses of CSE promoted tumor-like transformation of human nontumor bronchial epithelial cells by inducing reactive oxygen species production and activating the relevant signaling

    TIDE: adjuvant tislelizumab plus donafenib combined with transarterial chemoembolization for high-risk hepatocellular carcinoma after surgery: protocol for a prospective, single-arm, phase II trial

    Get PDF
    BackgroundThe high recurrence rate of hepatocellular carcinoma (HCC) after surgery negatively affects the prognosis of patients. There is currently no widely accepted adjuvant therapy strategy for patients with HCC. A clinical study of effective adjuvant therapy is still needed.MethodsIn this prospective, single-arm, phase II clinical trial, an adjuvant regimen of donafenib plus tislelizumab combined with transarterial chemoembolization (TACE) will be used to treat enrolled HCC patients after surgery. Briefly, patients newly diagnosed with HCC by pathological examination who underwent curative resection and had a single tumor more than 5 cm in diameter with microvascular invasion as detected by pathological examination are eligible. The primary endpoint of the study is the recurrence-free survival (RFS) rate at 3 years, and secondary endpoints are the overall survival (OS) rate and the incidence of adverse events (AEs). The planned sample size, 32 patients, was calculated to permit the accumulation of sufficient RFS events in 3 years to achieve 90% power for the RFS primary endpoint.DiscussionVascular endothelial growth factor (VEGF) and programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathways regulate the relevant immunosuppressive mechanisms of HCC recurrence. Our trial will evaluate the clinical benefit of adding donafenib plus tislelizumab to TACE in patients with early-stage HCC and a high risk of recurrence.Clinical trial registrationwww.chictr.org.cn, identifier ChiCTR2200063003

    Aberration-corrected three-dimensional positioning with a single-shot metalens array

    Get PDF
    Three-dimensional (3D) positioning with the correction of imaging aberrations in the photonic platform remains challenging. Here, we combine techniques from nanophotonics and machine vision to significantly improve the imaging and positioning performance. We use a titanium dioxide metalens array operating in the visible region to realize multipole imaging and introduce a cross-correlation-based gradient descent algorithm to analyze the intensity distribution in the image plane. This corrects the monochromatic aberrations to improve the imaging quality. Analysis of the two-dimensional aberration-corrected information in the image plane enables the 3D coordinates of the object to be determined with a measured relative accuracy of 0.60%-1.31%. We also demonstrate the effectiveness of the metalens array for arbitrary incident polarization states. Our approach is single-shot, compact, aberration-corrected, polarization-insensitive, and paves the way for future integrated photonic robotic vision systems and intelligent sensing platforms that are feasible on the submillimeter scale, such as face recognition, autonomous vehicles, microrobots, and wearable intelligent devices.National Key Research and Development Program of China (2016YFA0301102, 2017YFA0303800); China National Funds for Distinguished Young Scientists (11925403); National Natural Science Foundation of China (11904183, 11904181, 11974193, 91856101, 11774186, 21421001); Natural Science Foundation of Tianjin City for Distinguished Young Scientists (18JCJQJC45700); National Postdoctoral Program for Innovative Talents (BX20180148); China Postdoctoral Science Foundation (2018M640224, 2018M640229)
    • …
    corecore