43 research outputs found
Experimental Study on Macro-performance of Long-age HydraulicConcrete Based on High Temperature Accelerated Curing
In view of time-consuming and expensive for the long-age mechanical property test of hydraulic concrete, the change rule for the mechanical properties of hydraulic concrete with long-age is still unclear. Based on the equivalent age theory, the high-temperature curing method was employed to accelerate test. First, the macro-mechanical properties tests of hydraulic concrete at different curing ages (90d, 180d, 1a, 2a, 3a) and different fly ash contents (0%, 15%, 35%) were designed and carried out. Then the change rule of mechanical properties of hydraulic concrete at long-age were analyzed. In addition, the macro test results of concrete core specimen of a gravity dam which has been operated more than 40 years were adopted to feedback the above test results. The research results showed that the fly ash content had a significant influence on the activation energy Ea of hydraulic concrete. To reach the same hydration degree of design long-age, the curing time increased with the increasing of fly ash content. Within the curing age of 3a, the compressive and splitting tensile strength of concrete increased with the increasing of curing age. The strength values of cement concrete and concrete with 15% fly ash content were close to each other, while the strength values of concrete with 35% fly ash content were smaller than the cement concrete and concrete with 15% fly ash content. The consistency and reliability of the rule that the concrete strength continues to increase with age was further verified by combining the macroscopic test results and the strength growth rate calculation results of a gravity dam concrete core specimen that had been in service for more than 40 years
Knowledge Editing for Large Language Models: A Survey
Large language models (LLMs) have recently transformed both the academic and
industrial landscapes due to their remarkable capacity to understand, analyze,
and generate texts based on their vast knowledge and reasoning ability.
Nevertheless, one major drawback of LLMs is their substantial computational
cost for pre-training due to their unprecedented amounts of parameters. The
disadvantage is exacerbated when new knowledge frequently needs to be
introduced into the pre-trained model. Therefore, it is imperative to develop
effective and efficient techniques to update pre-trained LLMs. Traditional
methods encode new knowledge in pre-trained LLMs through direct fine-tuning.
However, naively re-training LLMs can be computationally intensive and risks
degenerating valuable pre-trained knowledge irrelevant to the update in the
model. Recently, Knowledge-based Model Editing (KME) has attracted increasing
attention, which aims to precisely modify the LLMs to incorporate specific
knowledge, without negatively influencing other irrelevant knowledge. In this
survey, we aim to provide a comprehensive and in-depth overview of recent
advances in the field of KME. We first introduce a general formulation of KME
to encompass different KME strategies. Afterward, we provide an innovative
taxonomy of KME techniques based on how the new knowledge is introduced into
pre-trained LLMs, and investigate existing KME strategies while analyzing key
insights, advantages, and limitations of methods from each category. Moreover,
representative metrics, datasets, and applications of KME are introduced
accordingly. Finally, we provide an in-depth analysis regarding the
practicality and remaining challenges of KME and suggest promising research
directions for further advancement in this field.Comment: 33 page
Cluster-Induced Mask Transformers for Effective Opportunistic Gastric Cancer Screening on Non-contrast CT Scans
Gastric cancer is the third leading cause of cancer-related mortality
worldwide, but no guideline-recommended screening test exists. Existing methods
can be invasive, expensive, and lack sensitivity to identify early-stage
gastric cancer. In this study, we explore the feasibility of using a deep
learning approach on non-contrast CT scans for gastric cancer detection. We
propose a novel cluster-induced Mask Transformer that jointly segments the
tumor and classifies abnormality in a multi-task manner. Our model incorporates
learnable clusters that encode the texture and shape prototypes of gastric
cancer, utilizing self- and cross-attention to interact with convolutional
features. In our experiments, the proposed method achieves a sensitivity of
85.0% and specificity of 92.6% for detecting gastric tumors on a hold-out test
set consisting of 100 patients with cancer and 148 normal. In comparison, two
radiologists have an average sensitivity of 73.5% and specificity of 84.3%. We
also obtain a specificity of 97.7% on an external test set with 903 normal
cases. Our approach performs comparably to established state-of-the-art gastric
cancer screening tools like blood testing and endoscopy, while also being more
sensitive in detecting early-stage cancer. This demonstrates the potential of
our approach as a novel, non-invasive, low-cost, and accurate method for
opportunistic gastric cancer screening.Comment: MICCAI 202
Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT by Integrating Neural Distance and Texture-Aware Transformer
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer in which
the tumor-vascular involvement greatly affects the resectability and, thus,
overall survival of patients. However, current prognostic prediction methods
fail to explicitly and accurately investigate relationships between the tumor
and nearby important vessels. This paper proposes a novel learnable neural
distance that describes the precise relationship between the tumor and vessels
in CT images of different patients, adopting it as a major feature for
prognosis prediction. Besides, different from existing models that used CNNs or
LSTMs to exploit tumor enhancement patterns on dynamic contrast-enhanced CT
imaging, we improved the extraction of dynamic tumor-related texture features
in multi-phase contrast-enhanced CT by fusing local and global features using
CNN and transformer modules, further enhancing the features extracted across
multi-phase CT images. We extensively evaluated and compared the proposed
method with existing methods in the multi-center (n=4) dataset with 1,070
patients with PDAC, and statistical analysis confirmed its clinical
effectiveness in the external test set consisting of three centers. The
developed risk marker was the strongest predictor of overall survival among
preoperative factors and it has the potential to be combined with established
clinical factors to select patients at higher risk who might benefit from
neoadjuvant therapy.Comment: MICCAI 202
High precision proton beam monitor system concept design on CSNS based on SiC
A high precision beam monitor system based on silicon carbide PIN sensor is
designed for China Spallation Neutron Source 1.6 GeV proton beam to monitor the
proton beam fluence.The concept design of the beam monitor system is finished
together with front-end electronics with silicon carbide PIN sensors, readout
system and mechanical system.Several tests are performed to study the
performance of each component of the system.The charge collection of the SiC
PIN sensors after proton radiation is studied with 80 MeV proton beam for
continuous running. Research on the performance of the front-end electronics
and readout system is finished for better data acquisition.The uncertainty of
proton beam fluence is below 1% in the beam monitor system
CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Nuclear detection, segmentation and morphometric profiling are essential in
helping us further understand the relationship between histology and patient
outcome. To drive innovation in this area, we setup a community-wide challenge
using the largest available dataset of its kind to assess nuclear segmentation
and cellular composition. Our challenge, named CoNIC, stimulated the
development of reproducible algorithms for cellular recognition with real-time
result inspection on public leaderboards. We conducted an extensive
post-challenge analysis based on the top-performing models using 1,658
whole-slide images of colon tissue. With around 700 million detected nuclei per
model, associated features were used for dysplasia grading and survival
analysis, where we demonstrated that the challenge's improvement over the
previous state-of-the-art led to significant boosts in downstream performance.
Our findings also suggest that eosinophils and neutrophils play an important
role in the tumour microevironment. We release challenge models and WSI-level
results to foster the development of further methods for biomarker discovery
Automated Selection and Localization of Mobile Cranes in Construction Planning
Accurate selection and location of mobile cranes is a critical issue on construction sites, being able to contribute to the improvement of the safety and efficiency of lifting operations. Considering the complexities and dynamics of construction sites, this study aimed to develop a useful approach for automated selection and localization of mobile cranes based on the simulation of crane operations. First, the information required for crane selection and localization is analyzed and extracted from BIM (building information modeling). Then, mainly considering the crane capacity, the initial crane type is selected with candidate location points. Based on the simulation of lifting operation at the candidate points, feasible location points and crane types are determined through three constraint checks (i.e., environment constraint, operation constraint, and safety constraint). Besides, two kinds of efficiency optimization, namely lifting time minimization and crane movement minimization, are presented to figure out the best location points from the feasible points. Finally, the proposed approach is validated using a case study. This research contributes to not only crane operation planning but also automatic construction simulation, thus supporting the implementation of intelligent construction in the future
Imaging‐proteomic analysis for prediction of neoadjuvant chemotherapy responses in patients with breast cancer
Abstract Background Optimizing patient selection for neoadjuvant chemotherapy in patients with breast cancer remains an unmet clinical need. Quantitative features from medical imaging were reported to be predictive of treatment responses. However, the biologic meaning of these latent features is poorly understood, preventing the clinical use of such noninvasive imaging markers. The study aimed to develop a deep learning signature (DLS) from pretreatment magnetic resonance imaging (MRI) for predicting responses to neoadjuvant chemotherapy in patients with breast cancer and to further investigate the biologic meaning of the DLS by identifying its underlying pathways using paired MRI and proteomic sequencing data. Methods MRI‐based DLS was constructed (radiogenomic training dataset, n = 105) and validated (radiogenomic validation dataset, n = 26) for the prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy. Proteomic sequencing revealed biological functions facilitating pCR (n = 139). Their associations with DLS were uncovered by radiogenomic analysis. Results The DLS achieved a prediction accuracy of 0.923 with an AUC of 0.958, higher than the performance of the model trained by transfer learning. Cellular membrane formation, endocytosis, insulin‐like growth factor binding, protein localization to membranes, and cytoskeleton‐dependent trafficking were differentially regulated in patients showing pCR. Oncogenic signaling pathways, features correlated with human phenotypes, and features correlated with general biological processes were significantly correlated with DLS in both training and validation dataset (p.adj < 0.05). Conclusions Our study offers a biologically interpretable DLS for the prediction of pCR to neoadjuvant chemotherapy in patients with breast cancer, which may guide personalized medication