9,729 research outputs found

    Magnetically Regulated Star Formation in Turbulent Clouds

    Full text link
    We investigate numerically the combined effects of supersonic turbulence, strong magnetic fields and ambipolar diffusion on cloud evolution leading to star formation. We find that, in clouds that are initially magnetically subcritical, supersonic turbulence can speed up star formation, through enhanced ambipolar diffusion in shocks. The speedup overcomes a major objection to the standard scenario of low-mass star formation involving ambipolar diffusion, since the diffusion time scale at the average density of a molecular cloud is typically longer than the cloud life time. At the same time, the strong magnetic field can prevent the large-scale supersonic turbulence from converting most of the cloud mass into stars in one (short) turbulence crossing time, and thus alleviate the high efficiency problem associated with the turbulence-controlled picture for low-mass star formation. We propose that relatively rapid but inefficient star formation results from supersonic collisions of somewhat subcritical gas in strongly magnetized, turbulent clouds. The salient features of this shock-accelerated, ambipolar diffusion-regulated scenario are demonstrated with numerical experiments.Comment: 10 pages, 3 figures, accepted for publication in ApJ

    Wind-Interaction Models for the Early Afterglows of Gamma-Ray Bursts: The Case of GRB 021004

    Full text link
    Wind-interaction models for gamma-ray burst afterglows predict that the optical emission from the reverse shock drops below that from the forward shock within 100s of seconds of the burst. The typical frequency νm\nu_m of the synchrotron emission from the forward shock passes through the optical band typically on a timescale of minutes to hours. Before the passage of νm\nu_m, the optical flux evolves as t−1/4t^{-1/4} and after the passage, the decay steepens to t−(3p−2)/4t^{-(3p-2)/4}, where pp is the exponent for the assumed power-law energy distribution of nonthermal electrons and is typically ∼2\sim 2. The steepening in the slope of temporal decay should be readily identifiable in the early afterglow light curves. We propose that such a steepening was observed in the R-band light curve of GRB 021004 around day 0.1. Available data at several radio frequencies are consistent with this interpretation, as are the X-ray observations around day~1. The early evolution of GRB 021004 contrasts with that of GRB 990123, which can be described by emission from interaction with a constant density medium.Comment: 16 pages, 1 figure, submitted to ApJ

    Production of large transverse momentum dileptons and photons in pppp, dAdA and AAAA collisions by photoproduction processes

    Full text link
    The production of large PTP_{T} dileptons and photons originating from photoproduction processes in pppp, dAdA and AAAA collisions is calculated. We find that the contribution of dileptons and photons produced by photoproduction processes is not prominent at RHIC energies. However, the numerical results indicate that the modification of photoproduction processes becomes evident in the large PTP_{T} region for pppp, dAdA and AAAA collisions at LHC energies.Comment: 10 figure

    Gamma-Ray Burst Environments and Progenitors

    Get PDF
    Likely progenitors for the GRBs (gamma-ray bursts) are the mergers of compact objects or the explosions of massive stars. These two cases have distinctive environments for the GRB afterglow: the compact object explosions occur in the ISM (interstellar medium) and those of massive stars occur in the preburst stellar wind. We calculate the expected afterglow for a burst in a Wolf-Rayet star wind and compare the results to those for constant, interstellar density. The optical afterglow for the wind case is generally expected to decline more steeply than in the constant density case, but this effect may be masked by variations in electron spectral index, and the two cases have the same evolution in the cooling regime. Observations of the concurrent radio and optical/X-ray evolution are especially useful for distinguishing between the two cases. The different rates of decline of the optical and X-ray afterglows of GRB 990123 suggest constant density interaction for this case. We have previously found strong evidence for wind interaction in SN 1998bw/GRB 980425 and here present a wind model for GRB 980519. We thus suggest that there are both wind type GRB afterglows with massive star progenitors and ISM type afterglows with compact binary star progenitors. The wind type bursts are likely to be accompanied by a supernova, but not the ISM type.Comment: 11 pages, 1 figure, revised version, ApJ Letters, in pres

    Parton distribution functions and nuclear EMC effect in a statistical model

    Full text link
    A new and simple statistical approach is performed to calculate the parton distribution functions (PDFs) of the nucleon in terms of light-front kinematic variables. Analytic expressions of x-dependent PDFs are obtained in the whole x region. And thereafter, we treat the temperature T as a parameter of the atomic number A to explain the nuclear EMC effect in the region x∈[0.2,0.7]x \in [0.2, 0.7]. We give the predictions of PDF ratios, and they are very different from those by other models, thus experiments aiming at measuring PDF ratios are suggested to provide a discrimination of different models.Comment: 4 pages, no figure; talk given at the 5th International Conference On Quarks and Nuclear Physics (QNP09), Sep 2009, Beijing Chin

    Nonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation

    Get PDF
    We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m=2m=2 (or bar) mode, which is shown to be unstable during the dynamic collapse phase of cloud evolution after the central region has become magnetically supercritical. We find that, despite the presence of a strong magnetic field, the bar can grow fast enough that for a modest initial perturbation (at 5% level) a large aspect ratio is obtained during the isothermal phase of cloud collapse. The highly elongated bar is expected to fragment into small pieces during the subsequent adiabatic phase. Our calculations suggest that the strong magnetic fields observed in some star-forming clouds and envisioned in the standard picture of single star formation do not necessarily suppress bar growth and fragmentation; on the contrary, they may actually promote these processes, by allowing the clouds to have more than one (thermal) Jeans mass to begin with without collapsing promptly. Nonlinear growth of the bar mode in a direction perpendicular to the magnetic field, coupled with flattening along field lines, leads to the formation of supercritical cores that are triaxial in general. It removes a longstanding objection to the standard scenario of isolated star formation involving subcritical magnetic field and ambipolar diffusion based on the likely prolate shape inferred for dense cores. Continuted growth of the bar mode in already elongated starless cores, such as L1544, may lead to future binary and multiple star formation.Comment: 5 pages, 2 figures, accepted by ApJ

    Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes

    Get PDF
    Additional file 4: Table S3. Validation of microarray data by qRT-PCR in mungbean seedlings
    • …
    corecore