151 research outputs found

    Skin Lesion Analysis Towards Melanoma Detection Using Deep Learning Network

    Full text link
    Skin lesion is a severe disease in world-wide extent. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons, e.g. low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. International Skin Imaging Collaboration (ISIC) is a challenge focusing on the automatic analysis of skin lesion. In this paper, we proposed two deep learning methods to address all the three tasks announced in ISIC 2017, i.e. lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully-convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. To our best knowledges, we are not aware of any previous work proposed for this task. The proposed deep learning frameworks were evaluated on the ISIC 2017 testing set. Experimental results show the promising accuracies of our frameworks, i.e. 0.718 for task 1, 0.833 for task 2 and 0.823 for task 3 were achieved.Comment: ISIC201

    An investigation of automatic processing techniques for time-lapse microscope images

    Get PDF
    The analysis of time-lapse microscope images is a recent popular research topic. Processing techniques have been employed in such studies to extract important information about cells—e.g., cell number or alterations of cellular features—for various tasks. However, few studies provide acceptable results in practical applications because they cannot simultaneously solve the core challenges that are shared by most cell datasets: the image contrast is extremely low; the distribution of grey scale is non-uniform; images are noisy; the number of cells is large, etc. These factors also make manual processing an extremely laborious task. To improve the efficiency of related biological analyses and disease diagnoses. This thesis establishes a framework in these directions: a new segmentation method for cell images is designed as the foundation of an automatic approach for the measurement of cellular features. The newly proposed segmentation method achieves substantial improvements in the detection of cell filopodia. An automatic measuring mechanism for cell features is established in the designed framework. The measuring component enables the system to provide quantitative information about various cell features that are useful in biological research. A novel cell-tracking framework is constructed to monitor the alterations of cells with an accuracy of cell tracking above 90%. To address the issue of processing speed, two fast-processing techniques have been developed to complete edge detection and visual tracking. For edge detection, the new detector is a hybrid approach that is based on the Canny operator and fuzzy entropy theory. The method calculates the fuzzy entropy of gradients from an image to decide the threshold for the Canny operator. For visual tracking, a newly defined feature is employed in the fast-tracking mechanism to recognize different cell events with tracking accuracy: i.e., 97.66%, and processing speed, i.e., 0.578s/frame

    Understanding the Complexity Gains of Single-Task RL with a Curriculum

    Full text link
    Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks

    Generative Adversarial Networks for Video-to-Video Domain Adaptation

    Full text link
    Endoscopic videos from multicentres often have different imaging conditions, e.g., color and illumination, which make the models trained on one domain usually fail to generalize well to another. Domain adaptation is one of the potential solutions to address the problem. However, few of existing works focused on the translation of video-based data. In this work, we propose a novel generative adversarial network (GAN), namely VideoGAN, to transfer the video-based data across different domains. As the frames of a video may have similar content and imaging conditions, the proposed VideoGAN has an X-shape generator to preserve the intra-video consistency during translation. Furthermore, a loss function, namely color histogram loss, is proposed to tune the color distribution of each translated frame. Two colonoscopic datasets from different centres, i.e., CVC-Clinic and ETIS-Larib, are adopted to evaluate the performance of domain adaptation of our VideoGAN. Experimental results demonstrate that the adapted colonoscopic video generated by our VideoGAN can significantly boost the segmentation accuracy, i.e., an improvement of 5%, of colorectal polyps on multicentre datasets. As our VideoGAN is a general network architecture, we also evaluate its performance with the CamVid driving video dataset on the cloudy-to-sunny translation task. Comprehensive experiments show that the domain gap could be substantially narrowed down by our VideoGAN.Comment: Accepted by AAAI 202

    Tunable Soft Prompts are Messengers in Federated Learning

    Full text link
    Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources, alleviating privacy concerns that arise from directly sharing local data. However, the lack of model privacy protection in FL becomes an unneglectable challenge, especially when people want to federally finetune models based on a proprietary large language model. In this study, we propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts. These soft prompts, updated and transmitted between the server and clients, assume the role of the global model parameters and serve as messengers to deliver useful knowledge from the local data and global model. As the global model itself is not required to be shared and the local training is conducted based on an auxiliary model with fewer parameters than the global model, the proposed approach provides protection for the global model while reducing communication and computation costs in FL. Extensive experiments show the effectiveness of the proposed approach compared to several baselines. We have released the source code at \url{https://github.com/alibaba/FederatedScope/tree/fedsp/federatedscope/nlp/fedsp}.Comment: Accepted by EMNLP-2
    • …
    corecore