753 research outputs found

    Interpretable by Design: Wrapper Boxes Combine Neural Performance with Faithful Explanations

    Full text link
    Can we preserve the accuracy of neural models while also providing faithful explanations? We present wrapper boxes, a general approach to generate faithful, example-based explanations for model predictions while maintaining predictive performance. After training a neural model as usual, its learned feature representation is input to a classic, interpretable model to perform the actual prediction. This simple strategy is surprisingly effective, with results largely comparable to those of the original neural model, as shown across three large pre-trained language models, two datasets of varying scale, four classic models, and four evaluation metrics. Moreover, because these classic models are interpretable by design, the subset of training examples that determine classic model predictions can be shown directly to users

    Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions

    Full text link
    We study the tradeoff between consistency and robustness in the context of a single-trajectory time-varying Markov Decision Process (MDP) with untrusted machine-learned advice. Our work departs from the typical approach of treating advice as coming from black-box sources by instead considering a setting where additional information about how the advice is generated is available. We prove a first-of-its-kind consistency and robustness tradeoff given Q-value advice under a general MDP model that includes both continuous and discrete state/action spaces. Our results highlight that utilizing Q-value advice enables dynamic pursuit of the better of machine-learned advice and a robust baseline, thus result in near-optimal performance guarantees, which provably improves what can be obtained solely with black-box advice.Comment: 27 page

    Fast Ion Gates Outside the Lamb-Dicke Regime by Robust Quantum Optimal Control

    Full text link
    We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors. The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and, unlike the state of the art, requires neither weak-coupling Lamb-Dicke approximation nor perturbation treatment. With the application of gradient-based optimal control, it enables finding amplitude- and phase-modulated laser control protocols that work beyond the Lamb-Dicke regime, promising gate speed at the order of microseconds comparable to the characteristic trap frequencies. Also, robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections. Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation, and thus can find applications in near-future experiments.Comment: 9 pages, 3 figure

    How to empower GrĂŒnwald–Letnikov fractional difference equations with available initial condition?

    Get PDF
    In this paper, the initial condition independence property of GrĂŒnwald–Letnikov fractional difference is revealed for the first time. For example, the solution x(k) of equation aG∇kαx(k) = f(x(k)),  k > a + 1, cannot be calculated with initial condition x(a). First, the initial condition independence property is carefully investigated in both time domain and frequency domain. Afterwards, some possible schemes are formulated to make the considered system connect to initial condition. Armed with this information, the concerned property is examined on three modified GrĂŒnwald–Letnikov definitions. Finally, results from illustrative examples demonstrate that the developed schemes are sharp
    • 

    corecore