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Abstract. In this paper, the initial condition independence property of Grünwald–Letnikov
fractional difference is revealed for the first time. For example, the solution x(k) of equation
G
a∇α

kx(k) = f(x(k)), k > a + 1, cannot be calculated with initial condition x(a). First, the
initial condition independence property is carefully investigated in both time domain and frequency
domain. Afterwards, some possible schemes are formulated to make the considered system connect
to initial condition. Armed with this information, the concerned property is examined on three
modified Grünwald–Letnikov definitions. Finally, results from illustrative examples demonstrate
that the developed schemes are sharp.

Keywords: fractional calculus, independence, initial condition, Grünwald–Letnikov definition,
dynamic properties.

1 Introduction

Fractional calculus, born at the end of seventeenth century, has provided many hot topics
of research in many fields of science and engineering [4, 19]. The reason of the success
of the fractional calculus is its nonlocality. One of the possibility is the consideration
of discrete time systems, which have the advantages of simple calculation and small
singularity [24, 25]. For the details of the most recent advances, one can refer to some
excellent monographs [5, 7, 13] and the references cited therein as well.
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The Grünwald–Letnikov definition was originally proposed for the fractional deriva-
tive (time-domain case). To avoid the inconvenience of using its limit form, the infinites-
imal sampling period h was usually set as a finite small value in numerical computation
process [10,12,16]. Besides, with the discretization approximation of Grünwald–Letnikov
derivative, fractional-order systems can be implemented by FPGA (Field Programmable
Gate Array) [15,18]. Along this way, the interpretation of Grünwald–Letnikov derivative
was studied [6, 17]. The initial value problem was evaluated by [1, 3]. Actually, when h
is finite, especially when h = 1, it does denote the fractional difference [13]. For the
discrete case, [14] investigated the system order identification, [9] addressed the system
pseudo state estimation, [11, 20] discussed the stability analysis issue, and [8] considered
the perfect control problem. Due to their efforts, a series of wonderful and meaningful
results have been achieved [2].

Despite the wide use of Grünwald–Letnikov fractional difference, it has a major draw-
back (initial condition independence), which is the restriction on the dynamic behavior or
even the stability. For example, by using the definition given in [20], the state response of
G
a∇αkx(k) = λx(k) + bu(k) is meaningless, which brings many difficulties for analysis
and synthesis. To the best of the authors’ knowledge, no results on this property have
been reported, while it is indeed an essential property to be explored before Grünwald–
Letnikov fractional difference can be used as a viable tool. Bearing this in mind, this paper
plans to investigate the initial condition independence problem. It should be pointed out
that this work will deepen our understanding on Grünwald–Letnikov fractional difference
and enlarge its applicability.

The outline of the rest paper is organized as follows. Section 2 introduces some
basic knowledge of nabla discrete fractional calculus. Section 3 reveals the initial con-
ditions independent property of Grünwald–Letnikov fractional difference and provides
three schemes to empower Grünwald–Letnikov fractional difference equations with avail-
able initial condition. Section 4 discusses several relevant definitions briefly and presents
some detailed numerical examples to confirm the correctness and effectiveness of the
obtained results. Finally, the paper ends with a conclusion in Section 5.

2 Preliminaries

This section recalls some basic definitions and properties on nabla fractional calculus, for
more details, we refer the reader to [7, 13].

Definition 1. The nth nabla difference and nth nabla sum for a function x : Na+1−n → R
are defined respectively as

∇nx(k) :=

n∑
i=0

(−1)i
(
n

i

)
x(k − i), (1)

a∇−nk x(k) :=

k−a−1∑
i=0

(−1)i
(
−n
i

)
x(k − i), (2)
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where n ∈ Z+ is the difference/sum order, k ∈ Na+1 is the time variable, a ∈ R is the
initial instant, Na+1 := {a+1, a+2, a+3, . . . }, (pq) := Γ(p+1)/[Γ(q+1)Γ(p−q+1)],
and Γ(·) is the gamma function.

It can be found that (1) and (2) have a similar form. The distinction lies in that the
nabla difference has local memory, and the nabla sum has nonlocal memory. However,
to avoid the singularity, i.e., Γ(−n) = ∞, n ∈ N, the generalized binomial coefficient
can be calculated as alternative expression (−ni ) = (−)iΓ(n+ i)/[Γ(i+ 1)Γ(n)]. For the
special case of n = 0, let us make an assumption

∇0x(k) = a∇0
kx(k) := x(k). (3)

Extending the order n in Definition 1 from the positive integers to the positive real
number, the following definition can be derived.

Definition 2. The αth Grünwald–Letnikov fractional difference/sum for a function x :
Na+1 → R is defined as

G
a∇αkx(k) :=

k−a−1∑
i=0

(−1)i
(
α

i

)
x(k − i), (4)

where α ∈ R, k ∈ Na+1, and a ∈ R.

When the order α = 0, G
a∇αkx(k) = x(k), k ∈ Na+1, like (3). When the order

α = −n ∈ Z−, G
a∇−nk x(k) in (4) reduces to the classical nabla sum a∇−nk x(k) in (2).

When the order α ∈ R− \ Z−, G
a∇αkx(k) becomes the Grünwald–Letnikov fractional

sum, which is also known as the nabla Riemann–Liouville fractional sum [7]. When the
order α = n ∈ Z+, G

a∇nkx(k) is not identical to ∇nx(k) in (1), especially for those
k − a − 1 6 n, since the upper limit of summation in formula (4) is a time-varying
variable k−a−1 instead of the constant n. If the number of x(k− i) in the summation is
called as the memory length, it is worth noting that G

a∇nkx(k) has a time-varying memory
length, while ∇nx(k) has a fixed memory length, e.g., [Ga∇1

kx(k)]k=a+1 = x(a + 1),
[∇1x(k)]k=a+1 = x(a+1)−x(a), and G

a∇1
kx(k) = ∇1x(k) = x(k)−x(k−1), k > a+2.

When the order α ∈ R+ \ Z+, G
a∇αkx(k) becomes the Grünwald–Letnikov fractional

difference. Due to the perfect match in format of fractional difference and fractional sum,
the following relationship follows [23]:

G
a∇αkG

a∇−αk x(k) = G
a∇−αk

G
a∇αkx(k) = x(k), (5)

where α ∈ (n− 1, n), n ∈ Z+, k ∈ Na+1 and a ∈ R.
By combining the rising function pq := Γ(p+q)/Γ(p) with the convolution operation,

the Grünwald–Letnikov fractional difference/sum can be rewritten as

G
a∇αkx(k) =

(k − a)−α−1

Γ(−α)
∗ x(k), (6)

where α ∈ R \ N, k ∈ Na+1 and u(k) ∗ v(k) :=
∑k−a−1
i=0 u(i+ a+ 1)v(k − i).
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Given a function x : Na+1 → R, a ∈ R, if there exists some r > 0 such that
X(s) = N a{x(k)} :=

∑+∞
k=1(1 − s)k−1x(k + a) converges for |s − 1| < r, then the

following equality holds [22]:

N a

{
G
a∇αkx(k)

}
= sαX(s), (7)

where |s−1| < min{r, 1} and α ∈ R\Z+. Notably, the sufficient and necessary condition
for limk→+∞ x(k) = 0 is that the multiplicity of pole s = 0 for X(s) is less than 1 and
all other principal poles of X(s) satisfy |s− 1| > 1.

It can be observed from (5) and (7) that N a{Ga∇αkx(k)} is independent of the initial
condition x(a) or [Ga∇α−ik x(k)]k=a, i ∈ Z+, i < α + 1. This property will make it
impossible to get x(k) from G

a∇αkx(k) = λx(k), which means that the state or output
feedback control for the system G

a∇αkx(k) = f(x(k), u(k)), y(k) = g(x(k), u(k)) is
meaningless. For this reason, the objective of this work is to analyze this default property
and determine a recipe for eliminating this independence.

3 Main results

This section includes two parts, i.e., showing the independence of initial conditions and
solving the initial condition independence problem.

3.1 The independent case

Consider the following system with Grünwald–Letnikov definition:

G
a∇αkx(k) = f

(
x(k), u(k)

)
,

y(k) = g
(
x(k), u(k)

)
,

(8)

where α ∈ (0, 1), k ∈ Na+1, x(k) ∈ Rn, is the pseudo state, u(k) ∈ Rp is the input,
y(k) ∈ Rq is the output, f(·, ·) and g(·, ·) are linear or nonlinear functions.

Defining v(k) = f(x(k), u(k)) and using the property in (5), the first equation of (8)
can be rewritten as x(k) = G

a∇−αk v(k), which implies that when u(k) = 0, k ∈ Na+1,
is considered, x(k), k ∈ Na+1, cannot be calculated with initial condition x(a). Inspired
by [21], a discrete time frequency distributed model is introduced here: :

∇z(ω, k) = −ωz(ω, k) + f
(
x(k), u(k)

)
,

x(k) =

+∞∫
0

µα(ω)z(ω, k) dω,

y(k) = g
(
x(k), u(k)

)
,

(9)

where z(ω, a) = 0, ω ∈ [0,+∞). It can be checked that the relation from u(k) to x(k) is
equivalent to that of (8). Along this way, different equivalent representation of 1/sα could
give different equivalent models of (8). For simplicity, it will not be expanded here. To get
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the equivalent relationship, zero initial condition should be configured for the equivalent
model like (9), which is different from the Riemann–Liouville case and the Caputo case
[21].

In system (8), the fractional difference is not calculated directly. To continue, consider
the fractional difference operation directly

x(k) = G
a∇αkv(k), (10)

where α ∈ (0, 1), v(k) is known, x(k) is to be calculated, and k ∈ Na+1. Since sα =∫ +∞
0

µα(ω)/(1/s+ω) dω =
∫ +∞

0
µα(ω)s/(1 +ωs) dω holds for s ∈ C \R−, x(k) can

be calculated by the following systems:

a∇−1
k z(ω, k) = −ωz(ω, k) + v(k),

x(k) =

+∞∫
0

µα(ω)z(ω, k) dω,

ω∇z(ω, k) = −z(ω, k) +∇v(k),

x(k) =

+∞∫
0

µα(ω)z(ω, k) dω,

where α ∈ (0, 1), z(ω, a) = 0, k ∈ Na+1. Note that x(k) can be accurately calculated
without the dependance on initial condition v(a).

In the previous discussion, the order is assumed to be α ∈ (0, 1). If α ∈ (n − 1, n),
n ∈ Z+, G

a∇αkx(k) = ∇n−1G
a∇α−n+1

k x(k) brings the equivalent description of sys-
tem (8) as

∇n−1σ(k) = f
(
x(k), u(k)

)
,

∇z(ω, k) = −ωz(ω, k) + σ(k),

x(k) =

+∞∫
0

µα−n+1(ω)z(ω, k) dω,

y(k) = g
(
x(k), u(k)

)
,

where zero initial conditions [∇i−1σ(k)]k=a = 0, i = 1, 2, . . . , n − 1, and z(ω, a) = 0
are needed. Likewise, the large-order case of (10) can be analyzed.

Remark 1. It can be observed that no matter the system output of (8), and the difference
output of (10) can be accurately calculated without considering the initial condition. Even
if the order is extended from 0 < α < 1 to n − 1 < α < n, the independence
of initial conditions is always the same. This point is actually implied in Definition 2.
More specially, the calculation of G

a∇αkx(k), k ∈ Na+1, only needs the value of x(k),
k ∈ Na+1.
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Up till now, the initial conditions independence property of system (8) has been dis-
covered. To further show its influence, let us consider the following linear system gov-
erned by

G
a∇αkx(k) = λx(k) + bu(k) (11)

with α > 0, k ∈ Na+1, and b 6= 0. x(k) can be calculated as

x(k) = N −1
a

{
bU(s)

sα − λ

}
, (12)

where U(s) = N a{u(k)}. If the discrete Mittag-Leffler function Fα,β(λ, k, a) :=
N −1
a {sα−β/(sα − λ)} is introduced here, then one has

x(k) = bFα,α(λ, k, a) ∗ u(k). (13)

It is worth mentioning that in both (12) and (13), only the input response can be found,
and there is no state response. This result is quite coincident with the previous discussion.

Remark 2. One point worth emphasizing is that the exact calculation of x(k) in (8). Two
methods will be discussed.

The first one is to solve fractional difference equation directly. By using (4) and (6),
it follows

k−a−1∑
i=0

(i+ 1)−α−1

Γ(−α)
x(k − i) = λx(k) + bu(k), (14)

where α, a, λ, b, u(k), k ∈ Na+1, are known, and x(k), k ∈ Na+1, is to be calculated.
(14) can be rewritten as

x(k) =
1

1− λ

[
bu(k)−

k−a−1∑
i=1

(i+ 1)−α−1

Γ(−α)
x(k − i)

]
.

From this the value of x(k) can be calculated sequentially. (i + 1)−α−1/Γ(−α) =
Γ(i − α)/(Γ(−α)Γ(i + 1)), which involves the gamma function. When calculating the
value of gamma function using MATLAB code gamma(), one has Γ(171) =
7.257415615308056 · 10306 and Γ(171) = ∞. To avoid the overflow problem, two
available ways can be taken. The one is recursive computation by using the property

(i+ 1)−α−1

Γ(−α)
=
i−α−1

Γ(−α)

i− α− 1

i
.

The other is equivalent transform by using the relation

(i+ 1)−α−1

Γ(−α)
=

1

Γ(−α)
eln(Γ(i−α)/Γ(i+1)) =

1

Γ(−α)
eln Γ(i−α)−ln Γ(i+1),

where the code gammaln() is helpful. Some other treatment can be made before intro-
ducing logarithmic function when Γ(i− α) < 0.
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The second one is to solve fractional sum equation indirectly. By using (5), (11) can
be rewritten as

x(k) = λG
a∇−αk x(k) + bGa∇−αk u(k)

= λ

k−a−1∑
i=0

(i+ 1)α−1

Γ(α)
x(k − i) + b

k−a−1∑
i=0

(i+ 1)α−1

Γ(α)
u(k − i)

=
λ

1− λ

k−a−1∑
i=1

(i+ 1)α−1

Γ(α)
x(k − i) +

b

1− λ

k−a−1∑
i=0

(i+ 1)α−1

Γ(α)
u(k − i)

=
b

1− λ
u(k) +

1

1− λ

k−a−1∑
i=1

(i+ 1)α−1

Γ(α)

[
λx(k − i) + bu(k − i)

]
,

where (i + 1)α−1/Γ(α) could be calculated like (i + 1)−α−1/Γ(−α), while the unex-
pected case Γ(i− α) < 0 will not appear any more.

3.2 The dependent case

The system C
a∇αkx(k) = λx(k), α ∈ (n − 1, n), n ∈ Z+, k ∈ Na+1, with Caputo

fractional difference involves the initial conditions [∇ix(k)]k=a, i = 1, 2, . . . , n− 1. The
system R

a∇αkx(k) = λx(k), α ∈ (n−1, n), n ∈ Z+, k ∈ Na+1, under Riemann–Liouville
definition should consider initial conditions regarding to the Riemann–Liouville fractional
difference [Ra∇α−ik x(k)]k=a, i = 1, 2, . . . , n − 1, and Riemann–Liouville fractional sum
[Ra∇α−nk x(k)]k=a. However, G

a∇αkx(k) = λx(k), k ∈ Na+1, under Grünwald–Letnikov
definition does not depend on initial condition x(a) or any other case. Consequently, the
question on how to make fractional-order difference equation connect to initial condition
becomes urgent. In this part, four possible schemes are provided.

Scheme 1 I Consider the following system:

G
a∇αkx(k) = λx(k −m), (15)

where α > 0, k ∈ Na+1, λ ∈ R and m ∈ Z+.
Using the calculating approach in Remark 2 yields

x(k) = λx(k −m)−
k−a−1∑
i=1

(i+ 1)−α−1

Γ(−α)
x(k − i), (16)

x(k) = λ

k−a−1∑
i=0

(i+ 1)α−1

Γ(α)
x(k −m− i). (17)

It can be observed that when calculating x(k) for k ∈ Na+1, the initial conditions
x(a + 1 − m), x(a + 2 − m), . . . , x(a) are all adopted. This scheme just hints how
to solve the initial conditions independence issue when applying the Grünwald–Letnikov
fractional difference.
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DefiningX(s) := Nα{x(k)}, the time-delay property of the nabla Laplace transform
follows [22]

Nα

{
x(k −m)

}
= (1− s)m

[
X(s) +

0∑
i=1−m

(1− s)i−1x(a+ i)

]
,

from which the state response in frequency domain becomes

X(s) = λ

m∑
i=1

(1− s)m−i

sα − λ(1− s)m
x(a+ 1− i). (18)

Note that (18) coincides with (16) and (17). System (15) will be asymptotically stable if λ
is designed such that the multiplicity of root s = 0 is less than 1 or all other the principal
roots lie in the region |s− 1| > 1.

Scheme 2 I Consider the following system:

G
a∇αkx(k +m) = λx(k) (19)

with α > 0, k ∈ Na+1, λ ∈ R, and m ∈ Z+.
Using the calculating approach in Remark 2 yields

x(k +m) = λx(k)−
k−a−1∑
i=1

(i+ 1)−α−1

Γ(−α)
x(k +m− i),

x(k +m) = λ

k−a−1∑
i=0

(i+ 1)α−1

Γ(α)
x(k − i).

As such, the calculation of x(k) for k ∈ Na+m+1 strongly depends on the initial condi-
tions x(a+ 1), x(a+ 2), . . . , x(a+m).

By applying the following time advance property [22]

Nα

{
x(k +m)

}
= (1− s)−m

[
X(s)−

m∑
i=1

(1− s)i−1x(a+ i)

]
, (20)

X(s) := Nα{x(k)} can be expressed as

X(s) =

m∑
i=1

sα(1− s)i−1

sα − λ(1− s)m
x(a+ i).

To sum up, in face of the independence of initial conditions for Grünwald–Letnikov
fractional difference, the autonomous system G

a∇αkx(k) = λx(k) cannot work, while
system (15) or (19) can be used as a substitute. The stable condition of the system (19) is
the same with the system (15).
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Remark 3. Combing the two methods, a strange but available system follows G
a∇αkx(k) =

λx(k + m), where α > 0, k ∈ Na+1, λ ∈ R, λ 6= 0, and m ∈ Z+. In this regard,
one has the relationships x(k + m) = (1/λ)

∑k−a−1
i=1 (i + 1)−α−1/Γ(−α)x(k − i)

and X(s) = −λ
∑m
i=1(1 − s)i−1/[sα(1 − s)m − λ]x(a + i), which means that the

initial conditions x(a + 1), x(a + 2), . . . , x(a + m) are needed to calculate x(k) for
k ∈ Na+m+1. Different from the methods in (15) and (19), this method is not directly
applicable to the nonlinear case, such as G

a∇αkx(k) = f(x(k +m)).

Scheme 3 I Afterwards, let us continue to consider the system G
a∇αkx(k) = λx(k).

If we assume k ∈ Na+1+m, m ∈ Z+ and take x(a+ 1), x(a+ 2), . . . , x(a+m) as the
initial condition, the system becomes

G
a∇αk+mx(k +m) = λx(k +m) (21)

with α > 0, k ∈ Na+1, λ ∈ R, and m ∈ Z+. From this the initial condition has been
exerted successfully.

Using the calculating approach in Remark 2 yields

x(k +m) = − 1

1− λ

k+m−a−1∑
i=1

(i+ 1)−α−1

Γ(−α)
x(k +m− i),

x(k +m) =
1

1− λ

k+m−a−1∑
i=1

(i+ 1)α−1

Γ(α)
x(k +m− i).

Recalling Definition 2 yields

G
a∇αk+mx(k +m)

=

k+m−a−1∑
i=0

(−1)i
(
α

i

)
x(k +m− i)

=

k−a−1∑
i=0

(−1)i
(
α

i

)
x(k +m− i) +

k+m−a−1∑
i=k−a

(−1)i
(
α

i

)
x(k +m− i)

= G
a∇αkx(k +m) +

m∑
i=1

(k − a+ i)−α−1

Γ(−α)
x(m+ a+ 1− i),

from which X(s) := Nα{x(k)} can be expressed as

X(s) =

m∑
i=1

(1− s)i−1x(a+ i)− sα

sα − λ

m∑
i=1

(1− s)m−ix(a+m+ 1− i)

+
1

sα − λ

m∑
i=1

i−1∑
j=0

(1− s)m−i+j (j + 1)−α−1

Γ(−α)
x(a+m+ 1− i),

where (20) and Nα{(k − a)−α−1/Γ(−α)} = sα are adopted.
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It can be found that the initial conditions x(a+1), x(a+2), . . . , x(a+m) are implied
in X(s). The corresponding stability condition becomes that the root of sα − λ = 0 lies
in the region |s− 1| > 1. Compared with systems (15) and (19), it is more convenient to
use frequency tool in system (21). However, the inconvenience is that this method is not
applicable to the nonlinear case.

Scheme 4 I Along this way, consider the following system:

G
a−m∇αkx(k) = λx(k) (22)

with α > 0, k ∈ Na+1, λ ∈ R, and m ∈ Z+.
Using the calculating approach in Remark 2 yields

x(k) = − 1

1− λ

k+m−a−1∑
i=1

(i+ 1)−α−1

Γ(−α)
x(k − i),

x(k) =
1

1− λ

k+m−a−1∑
i=1

(i+ 1)α−1

Γ(α)
x(k − i).

The calculation of x(k), k∈Na+1, strongly depends on the initial conditions x(a−m+1),
x(a−m+2), . . . , x(a).

Recalling Definition 2 yields

G
a−m∇αkx(k) =

k+m−a−1∑
i=0

(−1)i
(
α

i

)
x(k − i)

=

k−a−1∑
i=0

(−1)i
(
α

i

)
x(k − i) +

k+m−a−1∑
i=k−a

(−1)i
(
α

i

)
x(k − i)

= G
a∇αkx(k) +

m∑
i=1

(k − a+ i)−α−1

Γ(−α)
x(a+ 1− i).

Defining X(s) := Nα{x(k)}, it follows

X(s) = − sα

sα − λ

m∑
i=1

(1− s)−ix(a+ 1− i)

+
1

sα − λ

m∑
i=1

i−1∑
j=0

(1− s)−i+j (j + 1)−α−1

Γ(−α)
x(a+ 1− i),

where (20) and Nα{(k − a)−α−1/Γ(−α)} = sα are adopted again.
It can be found that the initial conditions x(a+ 1−m), x(a+ 2−m), . . . , x(a) are

implied inX(s). The corresponding stability condition becomes that the root of sα−λ=0
lies in the region |s− 1| > 1.
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Till now, four available schemes have been presented already. Note that the systems
in (15), (19), (21), and (22) only need the initial condition about x(k) not the difference
or sum of x(k), which is helpful in practical applications. The nature of them is shifting.
Along this way, there are various of methods to introduce the initial condition. The basic
principle might be to connect the future signal with the past signal and calculate the
unknown value with the known value.

Remark 4. The Grünwald–Letnikov fractional difference/sum adopted in [8,9,11,13,14]
is actually G

a−1∇αkx(k) =
∑k−a
i=0 (−1)i

(
α
i

)
x(k − i), k ∈ N a, which is a special case

of (22) with m = 1. In that case, the initial conditions independence can also be solved.
When k = a, system G

a−1∇αkx(k) = λx(k), k ∈ Na, becomes x(a) = λx(a), which is
unexpected. To avoid this confusing phenomenon, the discrete time k ∈ Na+1 should be
applied.

4 Further discussion

In this section, the developed results will be discussed for some variants of discrete
Grünwald–Letnikov fractional calculus. Afterwards, three detailed numerical examples
are provided to verify the correctness of the proposed theory.

4.1 Extension

In the previous discussion, the basic is assumed. Hereafter, three other definitions will be
considered.

Definition 3. For x : Na+1 → R, its αth tempered Grünwald–Letnikov fractional dif-
ference/sum is defined by

G
a∇

α,λ
k x(k) := (1− λ)a−k

k−a−1∑
i=0

(−1)i
(
α

i

)
(1− λ)k−i−ax(k − i),

where α ∈ R, λ ∈ R, λ 6= 1, k ∈ Na+1, and a ∈ R.

By using the nabla Laplace transform, it follows

N a

{
G
a∇

α,λ
k x(k)

}
=

(
s− λ
1− λ

)α
X(s). (23)

Although a new parameter λ is introduced, there is no item regarding to the initial
condition in (23).

Definition 4. For x : Na+1 → R, its α(k)th Grünwald–Letnikov fractional difference/
sum is defined by

G
a∇

α(k)
k x(k) :=

k−a−1∑
i=0

(−1)i
(
α(k)

i

)
x(k − i),

where α(k) ∈ R, k ∈ Na+1, and a ∈ R.
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The elegant formula N a{Ga∇
α(k)
k x(k)} = sα(k)X(s) does not hold, while this defi-

nition can be rewritten as G
a∇

α(k)
k x(k) = (k − a)−α(k)−1/Γ(−α(k)) ∗ x(k). Defining

Π(s) =

+∞∑
k=0

(s− 1)k
(
α(k + a+ 1)

k

)
,

it follows
N a

{
G
a∇

α(k)
k x(k)

}
= Π(s)X(s).

From this, when G
a∇

α(k)
k x(k), k ∈ Na+1, is calculated, no more information of x(k),

k < a + 1 is needed. To be more precise, all the fractional differences in Definitions 2,
3, and 4 are independent on the initial condition. Fortunately, by using the schemes in
Section 3.2, the initial condition dependence can be attained.

Definition 5. For x : Na+1−N → R, its αth Grünwald–Letnikov fractional difference/
sum is defined by

G
k−N∇αkx(k) :=

N∑
i=0

(−1)i
(
α

i

)
x(k − i),

where α ∈ R, N ∈ Z+, k ∈ Na+1, and a ∈ R.

Notably, the equality G
k−N∇Nk x(k) = ∇Nx(k) strongly implies the possible connec-

tion to the initial condition. Another equality G
k−N∇αkx(k) = G

a∇αkx(k) − G
a∇αk−Nx(k)

also shows that the calculation of G
k−N∇αkx(k) for k ∈ Na+1 depends on the history

information x(k), k < a + 1. Different from the previous definitions, here the memory
length is a constant value N + 1 instead of a time varying value k − a. Along this way,
both G

a∇αk+Nx(k) and G
k∇αk+Nx(k) might be the alternative schemes to generate the

initial conditions.

4.2 Examples

Example 1. Consider the following five systems:

case 1: G
3∇0.6

k x1(k) = λx1(k − 1),

case 2: G
3∇0.6

k x2(k) = λx2(k + 1),

case 3: G
3∇0.6

k x3(k + 1) = λx3(k),

case 4: G
3∇0.6

k+1x4(k + 1) = λx4(k + 1),

case 5: G
2∇0.6

k x5(k) = λx5(k)

(24)

with k ∈ N4 and x1(3) = x2(4) = x3(4) = x4(4) = x5(3) = σ. For the purpose of
plotting, denote x(k) as xi(k), i = 1, 2, . . . , 5, for each case. To make the system stable,
λ = −1.2, λ = −6, λ = −0.5, λ = 2, and λ = 2 are selected for cases 1–5, respectively.
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step k
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step k
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case 1
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(b) σ = 1

step k
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case 1

case 2

case 3
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case 5

(c) σ = −1

step k
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x
2
(k
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case 1

case 2

case 3

case 4

case 5

(d) σ = −1

Figure 1. The state response of (24) with different initial conditions.

When the value of σ is assumed as 1,−1 in succession, then the resulting result are plotted
in Figs. 1(a)–1(d).

It can be observed that with the shifting principle, the initial conditions are available to
calculate x(k), k ∈ N4, in cases 1–5. Moreover, for different σ, x(k) can converge to 0
as k increases. In this connection, the results in Section 3.2 have been validated.

Example 2. To evaluate the practicability of the proposed result, the following gradient
methods are considered:

case 1: G
3∇αkx1(k) = −ρ d

dx
J(x)

∣∣∣∣
x=x1(k)

,

case 2: G
3∇αkx2(k) = −ρ d

dx
J(x)

∣∣∣∣
x=x2(k−1)

,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


How to empower Grünwald–Letnikov fractional difference equations? 663

case 3: G
3∇αkx3(k) = −ρ d

dx
J(x)

∣∣∣∣
x=x3(k+1)

,

case 4: G
3∇αkx4(k + 1) = −ρ d

dx
J(x)

∣∣∣∣
x=x4(k)

,

case 5: G
3∇αk+1x5(k + 1) = −ρ d

dx
J(x)

∣∣∣∣
x=x5(k+1)

,

case 6: G
2∇αkx6(k) = −ρ d

dx
J(x)

∣∣∣∣
x=x6(k)

.

In the beginning, the quadratic objective function J(x) = η(x− xm)2 + Jm is
considered, where η = 3, xm = 5, Jm = −12 (see Fig. 2). The learning rate ρ is
selected as ρ = 1.2 for cases 1,3,5,6 and ρ = 0.16 for cases 2 and 4. Set x2(3) =
x3(4) = x4(4) = x5(4) = x6(3) = σ for cases 2–6 with σ = 1. The value of x1(4) in
case 1 is calculated directly. Similarly, denote x(k) as xi(k) is adopted for plotting. In
this case, the optimization results with different α are plotted in Fig. 3(a)–3(f).

These figures clearly show that all the presented cases could find the exact extreme
point xm for α < 2. Since the stability domain of (15) or (19) is difficult to obtain and
therefore cases 2 and 4 are not included in the case of α > 2. For cases 1–6, the overshoot
appears when α > 1. Notably, the initial value x(4) in case 1 is different from others (see
yellow circle and red circle) since the calculation is x1(4) = 2(ρη/(2ρη+ 1))xm, not the
setting value 1.

In what follows, the quartic function J(x) = 3x4 − 4x3 − 12x2 shown in Fig. 4 is
considered. Because the gradient dJ(x)/dx = 12x(x− 2)(x+ 1) is nonlinear, the exact
solutions of cases 1, 3, 5, and 6 cannot be calculated directly. Therefore, only cases 2
and 4 are discussed hereinafter. With the following parameters α = 1.2, ρ = 0.016, and
σ = −2.5,−2.4, . . . , 2.5, the simulation results can be obtained as Figs. 5(a)–5(b).
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-30
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80
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Figure 2. The quadratic function to be optimized.
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(f) α = 5.5

Figure 3. The optimization results of a quadratic function with different α.
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Figure 4. The quartic function to be optimized.
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Figure 5. The optimization results of a quartic function.

Since dJ(x)/dx = 0, the exact extreme points are x = −1, x = 0, and x = 2. More
specially, x = −1 is a local minima point, x = 0 is maximum point, and x = 2 is a global
minima point. From Fig. 5(a) it can be found that all the curves converge to the exact
extreme points. Likewise, cases 2 and 4 give the similar results. The relationship between
the convergent point and the initial condition is clearly shown in Fig. 5(b), which means
that the initial conditions independence disappears with the special design.

Example 3. Construct the following fractional-order neural network:
G
3∇αkx1(k + 1) = −0.05x2(k)− 0.05x3(k) + 0.01 tanh

(
x2(k)

)
,

G
3∇αkx2(k + 1) = 0.05x1(k) + 0.02x2(k) + 0.01 tanh

(
x1(k)

)
,

G
3∇αkx3(k + 1) = 0.1− 0.2x3(k) + 0.05x1(k)x3(k) + 0.01 tanh

(
x3(k)

)
,

where x(4) = [1, −1, 0]T, α = 0.98, k ∈ N3.
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(b) The time evolution of x(k)

Figure 6. Simulation results of a chaotic system.

With the given conditions, the phase diagram in the three dimensional space is de-
picted in Fig. 6(a), and the trajectories of x(k) over time is shown in Fig. 6(b). It could
see that the proposed initial condition scheme is effective.

Before ending this section, the main contributions of this paper will be summarized to
make it more readability.

(i) The independence on the initial condition is shown for Grünwald–Letnikov frac-
tional difference equation.

(ii) The equivalent frequency distributed models for a fractional-order system with
Grünwald–Letnikov definition are derived.

(iii) The frequency distributed model is also developed for Grünwald–Letnikov frac-
tional difference calculation.

(iv) The unavailability of state response for a linear fractional-order system is ana-
lyzed.

(v) The dependent case is considered, which connects the system response with the
initial condition.

(vi) The independence problem is also discussed for some variants of Grünwald–
Letnikov definition.

5 Conclusions

In this paper, the initial conditions independent property has been studied for the first
time. Inspired by the meaningless system G

a∇αkx(k) = λx(k), k ∈ Na+1, the initial value
problem on Grünwald–Letnikov fractional difference is discussed from the definition, the
distributed frequency model, and the time–domain response. To improve the practicabil-
ity, four schemes are developed by connecting the initial conditions to the considered
system. Apart from this, three illustrative examples are provided to confirm our findings.
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It is believed that the proposed principles could greatly enrich the comprehension of
Grünwald–Letnikov fractional difference and facilitate its applications. Future research
efforts will be directed towards the following topics.

(i) Discuss the stability condition of systems G
a∇αkx(k) = λx(k−m), G

a∇αkx(k) =
λx(k+m), G

a∇αkx(k+m) = λx(k) further and analyze the dynamic behaviour
of its time–domain system response.

(ii) Extend the related results to other Grünwald–Letnikov based definitions, i.e., the
right-hands, the nonsingular kernel case, time-scales case, etc.

(iii) Apply the initial conditions dependent Grünwald–Letnikov difference to practi-
cal applications, such as modeling, controlling, filtering, optimization, etc.
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