37,726 research outputs found

    Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare

    Get PDF
    Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ~109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons

    Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory

    Full text link
    We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (mχm_{\chi}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg⋅\cdotday exposure and 160 eVee threshold for TI analysis, and 1107.5 kg⋅\cdotday exposure and 250 eVee threshold for AM analysis. The sensitive windows in mχm_{\chi} are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σχNSI\sigma_{\chi N}^{\rm SI} at 90\% confidence level are derived as 2×2\times10−32∼7×^{-32}\sim7\times10−35^{-35} cm2\rm cm^2 for TI analysis at mχ∼m_{\chi}\sim 50−-180 MeV/c2c^2, and 3×3\times10−32∼9×^{-32}\sim9\times10−38^{-38} cm2\rm cm^2 for AM analysis at mχ∼m_{\chi}\sim75 MeV/c2−c^2-3.0 GeV/c2c^2.Comment: 5 pages, 4 figure

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Obvious enhancement of the total reaction cross sections for 27,28^{27,28}P with 28^{28}Si target and the possible relavent mechanisms

    Full text link
    The reaction cross sections of 27,28^{27,28}P and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at % Z=15. The experimental results for the isotones with Z≤14Z\leq 14 as well as % ^{28}P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross section for 28^{28}P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27^{27}P. Our theoretical analysis shows that an enlarged core together with proton halo are probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27^{27}P+28^{28}Si.Comment: 16 pages, 5 figures, to be published in Phys.Rev.

    Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory

    Full text link
    We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass pp-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Datasets with a total live time of 3.2 yr within a 4.2 yr span are analyzed with analysis threshold of 250 eVee. Limits on WIMP-nucleus (χ{\chi}-NN) spin-independent cross sections as function of WIMP mass (mχm_{\chi}) at 90\% confidence level (C.L.) are derived using the dark matter halo model. Within the context of the standard halo model, the 90\% C.L. allowed regions implied by the DAMA/LIBRA and CoGeNT AM-based analysis are excluded at >>99.99\% and 98\% C.L., respectively. These results correspond to the best sensitivity at mχm_{\chi}<<6 GeV/c2~{\rm GeV}/c^2 among WIMP AM measurements to date.Comment: 5 pages, 4 figure
    • …
    corecore