343 research outputs found

    GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise

    Full text link
    Text-to-3D, known for its efficient generation methods and expansive creative potential, has garnered significant attention in the AIGC domain. However, the amalgamation of Nerf and 2D diffusion models frequently yields oversaturated images, posing severe limitations on downstream industrial applications due to the constraints of pixelwise rendering method. Gaussian splatting has recently superseded the traditional pointwise sampling technique prevalent in NeRF-based methodologies, revolutionizing various aspects of 3D reconstruction. This paper introduces a novel text to 3D content generation framework based on Gaussian splatting, enabling fine control over image saturation through individual Gaussian sphere transparencies, thereby producing more realistic images. The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy. Taking inspiration from SJC, we explore employing multi-view noise distributions to perturb images generated by 3D Gaussian splatting, aiming to rectify inconsistencies in multi-view geometry. We ingeniously devise an efficient method to generate noise that produces Gaussian noise from diverse viewpoints, all originating from a shared noise source. Furthermore, vanilla 3D Gaussian-based generation tends to trap models in local minima, causing artifacts like floaters, burrs, or proliferative elements. To mitigate these issues, we propose the variational Gaussian splatting technique to enhance the quality and stability of 3D appearance. To our knowledge, our approach represents the first comprehensive utilization of Gaussian splatting across the entire spectrum of 3D content generation processes

    Enhancing Subtask Performance of Multi-modal Large Language Model

    Full text link
    Multi-modal Large Language Model (MLLM) refers to a model expanded from a Large Language Model (LLM) that possesses the capability to handle and infer multi-modal data. Current MLLMs typically begin by using LLMs to decompose tasks into multiple subtasks, then employing individual pre-trained models to complete specific subtasks, and ultimately utilizing LLMs to integrate the results of each subtasks to obtain the results of the task. In real-world scenarios, when dealing with large projects, it is common practice to break down the project into smaller sub-projects, with different teams providing corresponding solutions or results. The project owner then decides which solution or result to use, ensuring the best possible outcome for each subtask and, consequently, for the entire project. Inspired by this, this study considers selecting multiple pre-trained models to complete the same subtask. By combining the results from multiple pre-trained models, the optimal subtask result is obtained, enhancing the performance of the MLLM. Specifically, this study first selects multiple pre-trained models focused on the same subtask based on distinct evaluation approaches, and then invokes these models in parallel to process input data and generate corresponding subtask results. Finally, the results from multiple pre-trained models for the same subtask are compared using the LLM, and the best result is chosen as the outcome for that subtask. Extensive experiments are conducted in this study using GPT-4 annotated datasets and human-annotated datasets. The results of various evaluation metrics adequately demonstrate the effectiveness of the proposed approach in this paper

    S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds

    Full text link
    With the increasing reliance of self-driving and similar robotic systems on robust 3D vision, the processing of LiDAR scans with deep convolutional neural networks has become a trend in academia and industry alike. Prior attempts on the challenging Semantic Scene Completion task - which entails the inference of dense 3D structure and associated semantic labels from "sparse" representations - have been, to a degree, successful in small indoor scenes when provided with dense point clouds or dense depth maps often fused with semantic segmentation maps from RGB images. However, the performance of these systems drop drastically when applied to large outdoor scenes characterized by dynamic and exponentially sparser conditions. Likewise, processing of the entire sparse volume becomes infeasible due to memory limitations and workarounds introduce computational inefficiency as practitioners are forced to divide the overall volume into multiple equal segments and infer on each individually, rendering real-time performance impossible. In this work, we formulate a method that subsumes the sparsity of large-scale environments and present S3CNet, a sparse convolution based neural network that predicts the semantically completed scene from a single, unified LiDAR point cloud. We show that our proposed method outperforms all counterparts on the 3D task, achieving state-of-the art results on the SemanticKITTI benchmark. Furthermore, we propose a 2D variant of S3CNet with a multi-view fusion strategy to complement our 3D network, providing robustness to occlusions and extreme sparsity in distant regions. We conduct experiments for the 2D semantic scene completion task and compare the results of our sparse 2D network against several leading LiDAR segmentation models adapted for bird's eye view segmentation on two open-source datasets.Comment: 14 page

    Potential of tropical maize populations for improving an elite maize hybrid

    Get PDF
    Identifying exotic maize (Zea mays L) populations possessing favorable new alleles lacking in local elite hybrids is an important strategy for improving maize hybrids. Selection of an appropriate breeding method will increase the chance of successfully transferring these favorable new alleles into elite inbred lines of local hybrids. The objec¬tives of this study were to: (i) evaluate 14 maize populations from CIMMYT and identify those containing favorable alleles for grain yield, ear length, ear diameter, kernel length, plant height, and ear height that are lacking in a local super hybrid [Jidan261 (W9706 × Ji853)], and to (ii) determine which inbred parent should be improved. These re¬sults showed that the populations Pob43, Pob501, and La Posta had positive and significant numbers of favorable alleles not found in hybrid W9706 × Ji853 that could be used for simultaneous improvement of its grain yield, ear length, and kernel length, and that population QPM-Y was also a good donor for improvement of ear diameter and kernel length in the hybrid. Based on allele frequencies in the two inbred lines and the donor population, when the populations Pob43, La Posta, Pob501, and QPM-Y were used as donors, inbred line W9706 would be improved by selfing the F1 of the cross W9706 × donor population. These results suggested that CIMMYT germplasm has potential to improve temperate elite hybrids. The relationship between GCA and SCA from a previous study and the parameters obtained from the Dudley method are discussed. The results showed that the values of Lplμ’ esti¬mates obtained by applying the Dudley method had the same trend as GCA effects for grain yield but a less clear trend for ear length, while the trends in the relationship value were reversed for SCA between these populations and Lancaster-derived lines

    CRISPR-Cas technology opens a new era for the creation of novel maize germplasms

    Get PDF
    Maize (Zea mays) is one of the most important food crops in the world with the greatest global production, and contributes to satiating the demands for human food, animal feed, and biofuels. With population growth and deteriorating environment, efficient and innovative breeding strategies to develop maize varieties with high yield and stress resistance are urgently needed to augment global food security and sustainable agriculture. CRISPR-Cas-mediated genome-editing technology (clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated)) has emerged as an effective and powerful tool for plant science and crop improvement, and is likely to accelerate crop breeding in ways dissimilar to crossbreeding and transgenic technologies. In this review, we summarize the current applications and prospects of CRISPR-Cas technology in maize gene-function studies and the generation of new germplasm for increased yield, specialty corns, plant architecture, stress response, haploid induction, and male sterility. Optimization of gene editing and genetic transformation systems for maize is also briefly reviewed. Lastly, the challenges and new opportunities that arise with the use of the CRISPR-Cas technology for maize genetic improvement are discussed

    Genomic analyses provide insights into the genome evolution and environmental adaptation of the tobacco moth Ephestia elutella

    Get PDF
    Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies

    Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study

    Get PDF
    BACKGROUND: Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. RESULTS: In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. CONCLUSIONS: Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users

    Breaking the DECT Standard Cipher with Lower Time Cost

    Get PDF
    The DECT Standard Cipher (DSC) is a proprietary stream cipher used for encryption in the Digital Enhanced Cordless Telecommunications (DECT), which is a standard for short range cordless communication and widely deployed worldwide both in residential and enterprise environments. New weaknesses of the DSC stream cipher which are not discovered in previous works are explored and analyzed in this paper. Based on these weaknesses, new practical key recovery attacks and distinguishing attack on DSC with lower time cost are proposed. The first cryptanalytic result show that DSC can be broken in about 13.12 seconds in the known IV setting, when an offline phase that takes about 58.33 minutes is completed. After then, a distinguishing attack on DSC in the related key chosen IV setting is given, which has a time complexity of only 2 encryptions and a success probability of almost 1. Finally, based on the slide property, a key recovery attack on DSC with practical complexities is proposed. The experimental result shows that DSC can be broken on a common PC within about 44.97 seconds in the multiple related key setting. The attacks on DSC proposed in this paper clearly show that a well-designed initialization is absolutely necessary to design a secure stream cipher
    • …
    corecore