1,225 research outputs found

    g-B3N3C: a novel two-dimensional graphite-like material

    Get PDF
    A novel crystalline structure of hybrid monolayer hexagonal boron nitride (BN) and graphene is predicted by means of the first-principles calculations. This material can be derived via boron or nitrogen atoms substituted by carbon atoms evenly in the graphitic BN with vacancies. The corresponding structure is constructed from a BN hexagonal ring linking an additional carbon atom. The unit cell is composed of 7 atoms, 3 of which are boron atoms, 3 are nitrogen atoms, and one is carbon atom. It behaves a similar space structure as graphene, which is thus coined as g-B3N3C. Two stable topological types associated with the carbon bonds formation, i.e., C-N or C-B bonds, are identified. Interestingly, distinct ground states of each type, depending on C-N or C-B bonds, and electronic band gap as well as magnetic properties within this material have been studied systematically. Our work demonstrates practical and efficient access to electronic properties of two-dimensional nanostructures providing an approach to tackling open fundamental questions in bandgap-engineered devices and spintronics.Comment: 15 pages, 6 figure

    Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion

    Get PDF
    The aerosol effects on clouds and precipitation in deep convective cloud systems are investigated using the Weather Research and Forecast (WRF) model with the Morrison two-moment bulk microphysics scheme. Considering positive or negative relationships between the cloud droplet number concentration (Nc) and spectral dispersion (ɛ), a suite of sensitivity experiments are performed using an initial sounding data of the deep convective cloud system on 31 March 2005 in Beijing under either a maritime (‘clean’) or continental (‘polluted’) background. Numerical experiments in this study indicate that the sign of the surface precipitation response induced by aerosols is dependent on the ɛ−Nc relationships, which can influence the autoconversion processes from cloud droplets to rain drops. When the spectral dispersion ɛ is an increasing function of Nc, the domain-average cumulative precipitation increases with aerosol concentrations from maritime to continental background. That may be because the existence of large-sized rain drops can increase precipitation at high aerosol concentration. However, the surface precipitation is reduced with increasing concentrations of aerosol particles when ɛ is a decreasing function of Nc. For the ɛ−Nc negative relationships, smaller spectral dispersion suppresses the autoconversion processes, reduces the rain water content and eventually decreases the surface precipitation under polluted conditions. Although differences in the surface precipitation between polluted and clean backgrounds are small for all the ɛ−Nc relationships, additional simulations show that our findings are robust to small perturbations in the initial thermal conditions. Keywords: aerosol indirect effects, cloud droplet spectral dispersion, autoconversion parameterization, deep convective systems, two-moment bulk microphysics schem

    Existence and uniqueness of solutions for singular fourth-order boundary value problems

    Get PDF
    AbstractBy mixed monotone method, the existence and uniqueness are established for singular fourth-order boundary value problems. The theorems obtained are very general and complement previous known results
    • …
    corecore