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Abstract

By mixed monotone method, the existence and uniqueness are established for singular fourth-order boundary value problems.
The theorems obtained are very general and complement previous known results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Inrecent years, the study of fourth-order boundary value problems have been studied extensively in the literature (see
for instance [1-3,7—-12] and their references). In paper [9], the authors obtained some newest results for the singular
fourth-order boundary value problems. But there is no result on the uniqueness of solution for singular fourth-order
boundary value problems.

In this paper, first we get a unique fixed point theorem for a class of mixed monotone operators. Our idea comes from
the fixed point theorems for mixed monotone operators (see [4—6]). In virtue of the theorem, we consider the following
singular fourth-order boundary value problem:

{x(4)(t)+ﬁx”(t)=/lf(t,x), O0<t<l1, A>0, 0

x(0)=x(1) =x"0)=x"(1) =0,

where f(t,x) € C((0, 1) x (0, +00), (0, +00)) and f < 2.
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If f =0, the existence of positive solutions of (1.1) has been studied in [10]. They show the existence of one
positive solution when f (¢, x) is nonsingular and either superlinear or sublinear in x by employing a cone extension or
compression theorem.

2. Preliminaries

Suppose that x is a positive solution of (1.1). Then

1,1
x(1) =i/ / Gi(t,1)Ga(t,s)f(s,x(s))dsdr, 0<r<I, 2.1
0o Jo
where G(t, s) is Green’s function to —x” = 0, x(0) = x(1) = 0, and G,(¢, s) is Green’s function to —x” — fix =
0, x(0) = x(1) = 0. In particular,
t(l—ys), 0<r<s<],
Gi(,s) ={
s(I1—1), 0<s<r<]1,
and one can show that
t(1=0G1(s,9)<G1(1,5)<Gi(s,5) =s(1 —s), Gi1@t,9)<t(l —1),
(t,s) €[0,1] x [0, 1]. (2.2)
Set w = /|B]. If f <0, then G,(¢, 5) is explicitly given by

sinh wt sinh w(1 — )

h , 0<r<s <,
Gat.s)=1 .~ @O

sinh ws sinh w(1 — )
0<s <<l

9

w sinh
If f =0, then G2(z, 5) = G (1, s). If 0 < f < 7%, then G, (¢, s) is explicitly given by

sin wt sinw(1 — s)

- , 0<r<s <,
 sin @
Ga(t,s) =1 . .
sinws sinw(1l — t)
, 0<s<r«l.

 sin @
Clearly G»(t, s) > 0 for (¢, s) € (0, 1) x (0, 1).
By using (2.1) and (2.2), we see that for every positive solution x of (1.1), one has

1 1
Il <2 / / G1(t. DG (. ) f (5. x(s)) ds dr,
0 0

1,1
x(t)y>t(1 —t)/l/ / Gi(1,1)Ga(1,8) f(s,x(s))dsdt
0o Jo

2t(I —=0)xl, (2.3)
where [|x|| = sup{|x(r)]; 0<r<1}.
Let
1
G(t,s)= / Gi(t,7)Gy(t, s)drT, 2.4)
0

thus by (2.1), one has

1
x(t):i/ G(t,s)f(s,x(s))ds, 0<r<l1, 2.5)
0
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and by (2.2) one has

1 1
t(1 — t)/ Gi(1,71)Gy(t,s)dt<G(t, )<t (1 — t)/ Go(z, s)dr. (2.6)
0 0

Let P be a normal cone of a Banach space E, and e € P with |le| <1, e # 0. Define
Q. = {x € P| there exist constants m, M > 0 such that me <x < Me}.

Now we give a definition (see [5]).

Definition 2.1. Assume A : Q. x Q. — (.. A is said to be mixed monotone if A(x, y) is nondecreasing in x and
nonincreasing in y, i.e., if x; <x2(x1, x2 € Q,) implies A(x1, y) <A(x2,y) forany y € Q., and y; <y2(y1, 2 € Qe)
implies A(x, y1) > A(x, y) forany x € Q.. x* € Q, is said to be a fixed point of A if A(x*, x*) = x*.

Theorem 2.1. Suppose thatA: Q. x Q. — Q. is a mixed monotone operator and 3 a constant o, 0 < o < 1, such that
1
A(tx,;y) >t*A(x,y), Vx,y€ Q. O<t<l. 2.7)

Then A has a unique fixed point x* € Q.. Moreover, for any (xg, y0) € Qe X Qe,
Xn = AXn—1, Yn—-1),  Yn =An-1,Xn-1), n=1,2,...
satisfy
Xp —> X%,y — x¥,
where
e = 21 =01 =), llyw = x*l =o(1 = r™),
0 <r <1, ris a constant from (xg, yo).
Proof. From (2.7),
Ay = Ay 24 (Tay) o xoy e Qe
Then
A (;—C,ty) <TYA(xLy), Vx,y e Q. O<t<l. (2.8)
For any zo9 € Q., by virtue of A(zg, z0) € Q., there exist constants m, M > 0, such that
me < A(zo, z0) <Me,
and there exists a small 0 < 7 < 1 such that
t(()lfoc)/zMe <z20< t()*(l*“)/zme,
S0 we can obtain
2oty < AGo z0) <20ty PR O 2.9)

The following proof is the same as that in [5], we omit the proof.

Theorem 2.2 (Guo [5]). Suppose that A: Q. X Q. — Q. is a mixed monotone operator and 3 a constant o € (0, 1)
such that (2.7) holds. If x7 is a unique solution of equation

Alx,x)=4Ax (1>0)



158 X. Lin et al. / Journal of Computational and Applied Mathematics 196 (2006) 155—161

in Q,, then ||xj{ — x:f0|| - 0,A—> Ap. I[f0<a< %, then 0 < A1 < Ay implies x;kl >x}<2’ xj{l #* x}kz and

lim [xi =0, lim [x}| =+oo.
A—+00 . A—0F

3. Singular fourth-order boundary value problem

This section discusses singular fourth-order boundary value problem
{x(4)(t) + Bx"(t) = Af(t, x(1), O<t<l1, A>0,
x(0) =x(1) =x"(0) =x"(1) =0,

where ff < 7%
Throughout this section we assume that

f@,x)=q@®[gx)+hx)], te€(,1),
where
g : [0, +00) — [0, +00) is continuous and nondecreasing;

h: (0, 400) — (0, +00) is continuous and nonincreasing.

Let P ={x € C[0, 1]|x(t) >0, Vt € [0, 1]}. Obviously, P is a normal cone of Banach space C[0, 1].

Theorem 3.1. Suppose that there exists o € (0, 1) such that
g(tx) >1"g(x),

and
h(t~'x) > 1"h(x),

foranyt € (0, 1) and x >0, and g € C((0, 1), (0, 00)) satisfies

1
/ sTH1 —8)"*g(s)ds < + oo.
0

3.1)

(3.2)

(3.3)
(34)

(3.5)

(3.6)

3.7)

Then (3.1) has a unique positive solution xj (t). And moreover, 0 < 11 < Ay implies xi‘l Sx;’fz, xi‘l # xj{z. If o € (0, %),

then

lim ||x;t|| =0, lim ||xj|| = +o00.
A—0F A—+00

Proof. Since (3.6) holds, let 1 ~!x = y, one has
h(y) =t"h(ty).

Then
1
Let y = 1. The above inequality is

h(t)gtlah(l), Vi € (0, ).

(3.8)

(3.9)
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From (3.6), (3.8) and (3.9), one has
1
Wit 'x)>1*h(x), h (;> >1*h(1),
1 1
h(tx) < t—“h(x), h(t) < t—ah(l), te0,1), x>0.
Similarly, from (3.5), one has
gtx)=1"g(x), gt)=t"g(l), te(0,1), x>0.
Lett =1/x,x > 1, one has
g <x%g(l), x=1.
Lete(t) =t(1 — t), and we define

0, = {x e Clo, 1] ‘% 11— <x(@) <Mt —1), t €0, 1]},

where M > 1 is chosen such that

1 pl 1/(1-o)
M > max {{/ / Go(t, s)drg(s)Alg(1) + s~ *(1 — ) *h(1)] ds} ,
0 JO

1 pl —1/(1-o)
{/ f G1(t,1)G(t, s) dtg(s)A[h(1) + s*(1 — s)“g(l)]ds} } .
0o JO
For any x, y € Q,, we define

1
Aj(x, y)(@) =)»/0 G(t,5)q(s)[gx(s)) +h(y(s)lds, Vtel0,1].

First we show that A : Q. X Q, — Q..
Letx, y € Q, from (3.11) and (3.12), we have

gx() <gMt(l —1)<gM)<M*g(l), te (01,

and from (3.10) we have

Byt <h (%t(l - r)) <1 =0 (%)
éMat_“(l — t)_ah(l), te(0,1).

Then, from (2.6) and (3.15), we have

@< -n [ 1 | ' Ga(e,5) drg () MULg (1) + 571 — ) *h()]ds
<Mt(1 — t)O, Ot € [0, 1].
On the other hand, for any x, y € Q,, from (3.10) and (3.11), we have
gx(1) =g (ﬁt(l —t)) zt"(1—1)"g (ﬁ) 2t =" - e,
and

1 1
h(y(®)Zh(M1(1 —1))Z2h(M) =h (U_M) >Wh(l)’ 1€ (0, 1.

159

(3.10)

@3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Thus, from (2.6) and (3.15), we have

A, )0 21(1 —z>/ / G1 (2. DGa(x, 5) deg(s)M~Alh(1) + 5*(1 — 5)"g(1)] ds
0 0
E%I(l—t), te|0,1].

So, A is well defined and A;(Q, X Q) C Q..
Next, for any / € (0, 1), one has

1
Ax, 17y @) =2 /0 G(t, $)q(s)[g(Ux(s)) + h(I ™ y(s))1ds

1
>) /0 G, $)q()I*g(x(s)) + "h(y(s))]ds
:l“Ag(x, y)(), tel0,1].

So the conditions of Theorems 2.1 and 2.2 hold. Therefore there exists a unique x% 7 € Qe such that A 2%, x*) =x7 1
It is easy to check that x* 7 1s a unique positive solution of (3.1) for given 4 > 0. Moreover, Theorem 2.2 means that if

0 < A1 < A2, then )cA1 (1) <)cAz ), )cAl (t) # xﬂz () and if « € (0, 2), then
li =0, li |l = +oo.
A =0, lim gl =+
This completes the proof. [

Example. Consider the following singular fourth-order boundary value problem:

{x(4)(t)+ﬁx”(t)=i(,ux“ +x7b), 0<t<l, (3.16)
x(0)=x(1)=x"(0)=x"(1)=0
where <%, J,a,b>0, u>0.
Applying Theorem 3.1, we can find (3.16) has a unique positive solution xl-“ (t) provided
max{a, b} < 1. (3.17)

In addition, 0 < 41 < 1, implies x; gx ) *] + x;fz. If max{a, b} € (0, %), then
Jim xf =0, dim ) = +oo.
To see that, we put
x=max{a, b}, q@t)=1, gx) = hx)=x"
Thus 0 <o < 1 and
gtx) =1g(x) >1"g(x), h(t™'x) =1"h(x) =1"h(x),

for any r € (0, 1) and x > 0, and

1
/ 57Xl —s5) %ds < + oo,
0

thus all conditions in Theorem 3.1 are satisfied.
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