Existence and uniqueness of solutions for singular fourth-order boundary value problems ${ }^{2 / 3}$

Xiaoning Lin ${ }^{\text {a, b,* }}$, Daqing Jiang ${ }^{\text {a }}$, Xiaoyue Li^{a}
${ }^{a}$ School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, PR China
${ }^{\mathrm{b}}$ School of Business, Northeast Normal University, Changchun 130024, PR China

Received 8 June 2005; received in revised form 10 August 2005

Abstract

By mixed monotone method, the existence and uniqueness are established for singular fourth-order boundary value problems. The theorems obtained are very general and complement previous known results. © 2005 Elsevier B.V. All rights reserved.

MSC: 34B15; 34B16
Keywords: Mixed monotone operator; Fourth-order boundary value problem; Singular; Existence; Uniqueness

1. Introduction

In recent years, the study of fourth-order boundary value problems have been studied extensively in the literature (see for instance [1-3,7-12] and their references). In paper [9], the authors obtained some newest results for the singular fourth-order boundary value problems. But there is no result on the uniqueness of solution for singular fourth-order boundary value problems.

In this paper, first we get a unique fixed point theorem for a class of mixed monotone operators. Our idea comes from the fixed point theorems for mixed monotone operators (see [4-6]). In virtue of the theorem, we consider the following singular fourth-order boundary value problem:

$$
\left\{\begin{array}{l}
x^{(4)}(t)+\beta x^{\prime \prime}(t)=\lambda f(t, x), \quad 0<t<1, \quad \lambda>0, \tag{1.1}\\
x(0)=x(1)=x^{\prime \prime}(0)=x^{\prime \prime}(1)=0,
\end{array}\right.
$$

where $f(t, x) \in C((0,1) \times(0,+\infty),(0,+\infty))$ and $\beta<\pi^{2}$.

[^0]If $\beta=0$, the existence of positive solutions of (1.1) has been studied in [10]. They show the existence of one positive solution when $f(t, x)$ is nonsingular and either superlinear or sublinear in x by employing a cone extension or compression theorem.

2. Preliminaries

Suppose that x is a positive solution of (1.1). Then

$$
\begin{equation*}
x(t)=\lambda \int_{0}^{1} \int_{0}^{1} G_{1}(t, \tau) G_{2}(\tau, s) f(s, x(s)) \mathrm{d} s \mathrm{~d} \tau, \quad 0 \leqslant t \leqslant 1 \tag{2.1}
\end{equation*}
$$

where $G_{1}(t, s)$ is Green's function to $-x^{\prime \prime}=0, x(0)=x(1)=0$, and $G_{2}(t, s)$ is Green's function to $-x^{\prime \prime}-\beta x=$ $0, x(0)=x(1)=0$. In particular,

$$
G_{1}(t, s)= \begin{cases}t(1-s), & 0 \leqslant t \leqslant s \leqslant 1, \\ s(1-t), & 0 \leqslant s \leqslant t \leqslant 1,\end{cases}
$$

and one can show that

$$
\begin{align*}
& t(1-t) G_{1}(s, s) \leqslant G_{1}(t, s) \leqslant G_{1}(s, s)=s(1-s), \quad G_{1}(t, s) \leqslant t(1-t), \\
& \quad(t, s) \in[0,1] \times[0,1] . \tag{2.2}
\end{align*}
$$

Set $\omega=\sqrt{|\beta|}$. If $\beta<0$, then $G_{2}(t, s)$ is explicitly given by

$$
G_{2}(t, s)= \begin{cases}\frac{\sinh \omega t \sinh \omega(1-s)}{\omega \sinh \omega}, & 0 \leqslant t \leqslant s \leqslant 1 \\ \frac{\sinh \omega s \sinh \omega(1-t)}{\omega \sinh \omega}, & 0 \leqslant s \leqslant t \leqslant 1\end{cases}
$$

If $\beta=0$, then $G_{2}(t, s)=G_{1}(t, s)$. If $0<\beta<\pi^{2}$, then $G_{2}(t, s)$ is explicitly given by

$$
G_{2}(t, s)= \begin{cases}\frac{\sin \omega t \sin \omega(1-s)}{\omega \sin \omega}, & 0 \leqslant t \leqslant s \leqslant 1 \\ \frac{\sin \omega s \sin \omega(1-t)}{\omega \sin \omega}, & 0 \leqslant s \leqslant t \leqslant 1\end{cases}
$$

Clearly $G_{2}(t, s)>0$ for $(t, s) \in(0,1) \times(0,1)$.
By using (2.1) and (2.2), we see that for every positive solution x of (1.1), one has

$$
\begin{align*}
\|x\| & \leqslant \lambda \int_{0}^{1} \int_{0}^{1} G_{1}(\tau, \tau) G_{2}(\tau, s) f(s, x(s)) \mathrm{d} s \mathrm{~d} \tau \\
x(t) & \geqslant t(1-t) \lambda \int_{0}^{1} \int_{0}^{1} G_{1}(\tau, \tau) G_{2}(\tau, s) f(s, x(s)) \mathrm{d} s \mathrm{~d} \tau \\
& \geqslant t(1-t)\|x\| \tag{2.3}
\end{align*}
$$

where $\|x\|=\sup \{|x(t)| ; 0 \leqslant t \leqslant 1\}$.
Let

$$
\begin{equation*}
G(t, s)=\int_{0}^{1} G_{1}(t, \tau) G_{2}(\tau, s) \mathrm{d} \tau \tag{2.4}
\end{equation*}
$$

thus by (2.1), one has

$$
\begin{equation*}
x(t)=\lambda \int_{0}^{1} G(t, s) f(s, x(s)) \mathrm{d} s, \quad 0 \leqslant t \leqslant 1, \tag{2.5}
\end{equation*}
$$

and by (2.2) one has

$$
\begin{equation*}
t(1-t) \int_{0}^{1} G_{1}(\tau, \tau) G_{2}(\tau, s) \mathrm{d} \tau \leqslant G(t, s) \leqslant t(1-t) \int_{0}^{1} G_{2}(\tau, s) \mathrm{d} \tau . \tag{2.6}
\end{equation*}
$$

Let P be a normal cone of a Banach space E, and $e \in P$ with $\|e\| \leqslant 1, e \neq \theta$. Define

$$
Q_{e}=\{x \in P \mid \text { there exist constants } m, M>0 \text { such that } m e \leqslant x \leqslant M e\} .
$$

Now we give a definition (see [5]).
Definition 2.1. Assume $A: Q_{e} \times Q_{e} \rightarrow Q_{e}$. A is said to be mixed monotone if $A(x, y)$ is nondecreasing in x and nonincreasing in y, i.e., if $x_{1} \leqslant x_{2}\left(x_{1}, x_{2} \in Q_{e}\right)$ implies $A\left(x_{1}, y\right) \leqslant A\left(x_{2}, y\right)$ for any $y \in Q_{e}$, and $y_{1} \leqslant y_{2}\left(y_{1}, y_{2} \in Q_{e}\right)$ $\operatorname{implies} A\left(x, y_{1}\right) \geqslant A\left(x, y_{2}\right)$ for any $x \in Q_{e} \cdot x^{*} \in Q_{e}$ is said to be a fixed point of A if $A\left(x^{*}, x^{*}\right)=x^{*}$.

Theorem 2.1. Suppose that A : $Q_{e} \times Q_{e} \rightarrow Q_{e}$ is a mixed monotone operator and \exists a constant $\alpha, 0 \leqslant \alpha<1$, such that

$$
\begin{equation*}
A\left(t x, \frac{1}{t} y\right) \geqslant t^{\alpha} A(x, y), \quad \forall x, y \in Q_{e}, \quad 0<t<1 . \tag{2.7}
\end{equation*}
$$

Then A has a unique fixed point $x^{*} \in Q_{e}$. Moreover, for any $\left(x_{0}, y_{0}\right) \in Q_{e} \times Q_{e}$,

$$
x_{n}=A\left(x_{n-1}, y_{n-1}\right), \quad y_{n}=A\left(y_{n-1}, x_{n-1}\right), \quad n=1,2, \ldots
$$

satisfy

$$
x_{n} \rightarrow x^{*}, \quad y_{n} \rightarrow x^{*},
$$

where

$$
\left\|x_{n}-x^{*}\right\|=\mathrm{o}\left(1-r^{\alpha^{n}}\right), \quad\left\|y_{n}-x^{*}\right\|=\mathrm{o}\left(1-r^{\alpha^{n}}\right),
$$

$0<r<1, r$ is a constant from $\left(x_{0}, y_{0}\right)$.
Proof. From (2.7),

$$
A(x, y)=A\left(t t^{-1} x, t^{-1} t y\right) \geqslant t^{\alpha} A\left(\frac{x}{t}, t y\right), \quad x, y \in Q_{e} .
$$

Then

$$
\begin{equation*}
A\left(\frac{x}{t}, t y\right) \leqslant t^{-\alpha} A(x, y), \quad \forall x, y \in Q_{e}, \quad 0<t<1 \tag{2.8}
\end{equation*}
$$

For any $z_{0} \in Q_{e}$, by virtue of $A\left(z_{0}, z_{0}\right) \in Q_{e}$, there exist constants $m, M>0$, such that

$$
m e \leqslant A\left(z_{0}, z_{0}\right) \leqslant M e
$$

and there exists a small $0<t_{0}<1$ such that

$$
t_{0}^{(1-\alpha) / 2} M e \leqslant z_{0} \leqslant t_{0}^{-(1-\alpha) / 2} m e,
$$

so we can obtain

$$
\begin{equation*}
z_{0} t_{0}^{(1-\alpha) / 2} \leqslant A\left(z_{0}, z_{0}\right) \leqslant z_{0} t_{0}^{-(1-\alpha) / 2} \tag{2.9}
\end{equation*}
$$

The following proof is the same as that in [5], we omit the proof.
Theorem 2.2 (Guo [5]). Suppose that $A: Q_{e} \times Q_{e} \rightarrow Q_{e}$ is a mixed monotone operator and \exists a constant $\alpha \in(0,1)$ such that (2.7) holds. If x_{λ}^{*} is a unique solution of equation

$$
A(x, x)=\lambda x \quad(\lambda>0)
$$

in Q_{e}, then $\left\|x_{\lambda}^{*}-x_{\lambda_{0}}^{*}\right\| \rightarrow 0, \lambda \rightarrow \lambda_{0}$. If $0<\alpha<\frac{1}{2}$, then $0<\lambda_{1}<\lambda_{2}$ implies $x_{\lambda_{1}}^{*} \geqslant x_{\lambda_{2}}^{*}, x_{\lambda_{1}}^{*} \neq x_{\lambda_{2}}^{*}$ and

$$
\lim _{\lambda \rightarrow+\infty}\left\|x_{\lambda}^{*}\right\|=0, \quad \lim _{\lambda \rightarrow 0^{+}}\left\|x_{\lambda}^{*}\right\|=+\infty
$$

3. Singular fourth-order boundary value problem

This section discusses singular fourth-order boundary value problem

$$
\left\{\begin{array}{l}
x^{(4)}(t)+\beta x^{\prime \prime}(t)=\lambda f(t, x(t)), \quad 0<t<1, \quad \lambda>0 \tag{3.1}\\
x(0)=x(1)=x^{\prime \prime}(0)=x^{\prime \prime}(1)=0
\end{array}\right.
$$

where $\beta<\pi^{2}$.
Throughout this section we assume that

$$
\begin{equation*}
f(t, x)=q(t)[g(x)+h(x)], \quad t \in(0,1), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
& g:[0,+\infty) \rightarrow[0,+\infty) \text { is continuous and nondecreasing; } \tag{3.3}\\
& h:(0,+\infty) \rightarrow(0,+\infty) \text { is continuous and nonincreasing. } \tag{3.4}
\end{align*}
$$

Let $P=\{x \in C[0,1] \mid x(t) \geqslant 0, \forall t \in[0,1]\}$. Obviously, P is a normal cone of Banach space $C[0,1]$.
Theorem 3.1. Suppose that there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
g(t x) \geqslant t^{\alpha} g(x) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(t^{-1} x\right) \geqslant t^{\alpha} h(x) \tag{3.6}
\end{equation*}
$$

for any $t \in(0,1)$ and $x>0$, and $q \in C((0,1),(0, \infty))$ satisfies

$$
\begin{equation*}
\int_{0}^{1} s^{-\alpha} \cdot(1-s)^{-\alpha} q(s) \mathrm{d} s<+\infty \tag{3.7}
\end{equation*}
$$

Then (3.1) has a unique positive solution $x_{\lambda}^{*}(t)$. And moreover, $0<\lambda_{1}<\lambda_{2}$ implies $x_{\lambda_{1}}^{*} \leqslant x_{\lambda_{2}}^{*}, x_{\lambda_{1}}^{*} \neq x_{\lambda_{2}}^{*}$. If $\alpha \in\left(0, \frac{1}{2}\right)$, then

$$
\lim _{\lambda \rightarrow 0^{+}}\left\|x_{\lambda}^{*}\right\|=0, \quad \lim _{\lambda \rightarrow+\infty}\left\|x_{\lambda}^{*}\right\|=+\infty
$$

Proof. Since (3.6) holds, let $t^{-1} x=y$, one has

$$
h(y) \geqslant t^{\alpha} h(t y) .
$$

Then

$$
\begin{equation*}
h(t y) \leqslant \frac{1}{t^{\alpha}} h(y), \quad \forall t \in(0,1), \quad y>0 \tag{3.8}
\end{equation*}
$$

Let $y=1$. The above inequality is

$$
\begin{equation*}
h(t) \leqslant \frac{1}{t^{\alpha}} h(1), \quad \forall t \in(0,1) . \tag{3.9}
\end{equation*}
$$

From (3.6), (3.8) and (3.9), one has

$$
\begin{align*}
& h\left(t^{-1} x\right) \geqslant t^{\alpha} h(x), \quad h\left(\frac{1}{t}\right) \geqslant t^{\alpha} h(1), \\
& h(t x) \leqslant \frac{1}{t^{\alpha}} h(x), \quad h(t) \leqslant \frac{1}{t^{\alpha}} h(1), \quad t \in(0,1), \quad x>0 . \tag{3.10}
\end{align*}
$$

Similarly, from (3.5), one has

$$
\begin{equation*}
g(t x) \geqslant t^{\alpha} g(x), \quad g(t) \geqslant t^{\alpha} g(1), \quad t \in(0,1), \quad x>0 \tag{3.11}
\end{equation*}
$$

Let $t=1 / x, x>1$, one has

$$
\begin{equation*}
g(x) \leqslant x^{\alpha} g(1), \quad x \geqslant 1 . \tag{3.12}
\end{equation*}
$$

Let $e(t)=t(1-t)$, and we define

$$
\begin{equation*}
Q_{e}=\left\{x \in C[0,1] \left\lvert\, \frac{1}{M} t(1-t) \leqslant x(t) \leqslant M t(1-t)\right., t \in[0,1]\right\}, \tag{3.13}
\end{equation*}
$$

where $M>1$ is chosen such that

$$
\begin{align*}
& M>\max \left\{\left\{\int_{0}^{1} \int_{0}^{1} G_{2}(\tau, s) \mathrm{d} \tau q(s) \lambda\left[g(1)+s^{-\alpha}(1-s)^{-\alpha} h(1)\right] \mathrm{d} s\right\}^{1 /(1-\alpha)},\right. \\
& \left.\left\{\int_{0}^{1} \int_{0}^{1} G_{1}(\tau, \tau) G_{2}(\tau, s) \mathrm{d} \tau q(s) \lambda\left[h(1)+s^{\alpha}(1-s)^{\alpha} g(1)\right] \mathrm{d} s\right\}^{-1 /(1-\alpha)}\right\} . \tag{3.14}
\end{align*}
$$

For any $x, y \in Q_{e}$, we define

$$
\begin{equation*}
A_{\lambda}(x, y)(t)=\lambda \int_{0}^{1} G(t, s) q(s)[g(x(s))+h(y(s))] \mathrm{d} s, \quad \forall t \in[0,1] . \tag{3.15}
\end{equation*}
$$

First we show that $A_{\lambda}: Q_{e} \times Q_{e} \rightarrow Q_{e}$.
Let $x, y \in Q_{e}$, from (3.11) and (3.12), we have

$$
g(x(t)) \leqslant g(M t(1-t)) \leqslant g(M) \leqslant M^{\alpha} g(1), \quad t \in(0,1),
$$

and from (3.10) we have

$$
\begin{aligned}
h(y(t)) & \leqslant h\left(\frac{1}{M} t(1-t)\right) \leqslant t^{-\alpha}(1-t)^{-\alpha} h\left(\frac{1}{M}\right) \\
& \leqslant M^{\alpha} t^{-\alpha}(1-t)^{-\alpha} h(1), \quad t \in(0,1) .
\end{aligned}
$$

Then, from (2.6) and (3.15), we have

$$
\begin{aligned}
A_{\lambda}(x, y)(t) & \leqslant t(1-t) \int_{0}^{1} \int_{0}^{1} G_{2}(\tau, s) \mathrm{d} \tau q(s) M^{\alpha} \lambda\left[g(1)+s^{-\alpha}(1-s)^{-\alpha} h(1)\right] \mathrm{d} s \\
& \leqslant M t(1-t), \quad t \in[0,1] .
\end{aligned}
$$

On the other hand, for any $x, y \in Q_{e}$, from (3.10) and (3.11), we have

$$
g(x(t)) \geqslant g\left(\frac{1}{M} t(1-t)\right) \geqslant t^{\alpha}(1-t)^{\alpha} g\left(\frac{1}{M}\right) \geqslant t^{\alpha}(1-t)^{\alpha} \frac{1}{M^{\alpha}} g(1),
$$

and

$$
h(y(t)) \geqslant h(M t(1-t)) \geqslant h(M)=h\left(\frac{1}{1 / M}\right) \geqslant \frac{1}{M^{\alpha}} h(1), \quad t \in(0,1) .
$$

Thus, from (2.6) and (3.15), we have

$$
\begin{aligned}
A_{\lambda}(x, y)(t) & \geqslant t(1-t) \int_{0}^{1} \int_{0}^{1} G_{1}(\tau, \tau) G_{2}(\tau, s) \mathrm{d} \tau q(s) M^{-\alpha} \lambda\left[h(1)+s^{\alpha}(1-s)^{\alpha} g(1)\right] \mathrm{d} s \\
& \geqslant \frac{1}{M} t(1-t), \quad t \in[0,1]
\end{aligned}
$$

So, A_{λ} is well defined and $A_{\lambda}\left(Q_{e} \times Q_{e}\right) \subset Q_{e}$.
Next, for any $l \in(0,1)$, one has

$$
\begin{aligned}
A_{\lambda}\left(l x, l^{-1} y\right)(t) & =\lambda \int_{0}^{1} G(t, s) q(s)\left[g(l x(s))+h\left(l^{-1} y(s)\right)\right] \mathrm{d} s \\
& \geqslant \lambda \int_{0}^{1} G(t, s) q(s)\left[l^{\alpha} g(x(s))+l^{\alpha} h(y(s))\right] \mathrm{d} s \\
& =l^{\alpha} A_{\lambda}(x, y)(t), \quad t \in[0,1] .
\end{aligned}
$$

So the conditions of Theorems 2.1 and 2.2 hold. Therefore there exists a unique $x_{\lambda}^{*} \in Q_{e}$ such that $A_{\lambda}\left(x^{*}, x^{*}\right)=x_{\lambda}^{*}$. It is easy to check that x_{λ}^{*} is a unique positive solution of (3.1) for given $\lambda>0$. Moreover, Theorem 2.2 means that if $0<\lambda_{1}<\lambda_{2}$, then $x_{\lambda_{1}}^{*}(t) \leqslant x_{\lambda_{2}}^{*}(t), x_{\lambda_{1}}^{*}(t) \neq x_{\lambda_{2}}^{*}(t)$ and if $\alpha \in\left(0, \frac{1}{2}\right)$, then

$$
\lim _{\lambda \rightarrow 0^{+}}\left\|x_{\lambda}^{*}\right\|=0, \quad \lim _{\lambda \rightarrow+\infty}\left\|x_{\lambda}^{*}\right\|=+\infty
$$

This completes the proof.
Example. Consider the following singular fourth-order boundary value problem:

$$
\left\{\begin{array}{l}
x^{(4)}(t)+\beta x^{\prime \prime}(t)=\lambda\left(\mu x^{a}+x^{-b}\right), \quad 0<t<1 \tag{3.16}\\
x(0)=x(1)=x^{\prime \prime}(0)=x^{\prime \prime}(1)=0,
\end{array}\right.
$$

where $\beta<\pi^{2}, \lambda, a, b>0, \mu \geqslant 0$.
Applying Theorem 3.1, we can find (3.16) has a unique positive solution $x_{\lambda}^{*}(t)$ provided

$$
\begin{equation*}
\max \{a, b\}<1 \tag{3.17}
\end{equation*}
$$

In addition, $0<\lambda_{1}<\lambda_{2}$ implies $x_{\lambda_{1}}^{*} \leqslant x_{\lambda_{2}}^{*}, x_{\lambda_{1}}^{*} \neq x_{\lambda_{2}}^{*}$. If $\max \{a, b\} \in\left(0, \frac{1}{2}\right)$, then

$$
\lim _{\lambda \rightarrow 0^{+}}\left\|x_{\lambda}^{*}\right\|=0, \quad \lim _{\lambda \rightarrow+\infty}\left\|x_{\lambda}^{*}\right\|=+\infty
$$

To see that, we put

$$
\alpha=\max \{a, b\}, \quad q(t)=1, \quad g(x)=\mu x^{a}, \quad h(x)=x^{-b} .
$$

Thus $0<\alpha<1$ and

$$
g(t x)=t^{a} g(x) \geqslant t^{\alpha} g(x), \quad h\left(t^{-1} x\right)=t^{b} h(x) \geqslant t^{\alpha} h(x),
$$

for any $t \in(0,1)$ and $x>0$, and

$$
\int_{0}^{1} s^{-\alpha}(1-s)^{-\alpha} \mathrm{d} s<+\infty
$$

thus all conditions in Theorem 3.1 are satisfied.

References

[1] R.P. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations 26 (1989) 91-110.
[2] C. De Coster, C. Fabry, F. Munyamarere, Nonresonance conditions for fourth order nonlinear boundary value problems, Internat. J. Math. Sci. 17 (1994) 725-740.
[3] M.A. Del Pino, R.F. Manasevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991) 81-86.
[4] D. Guo, Fixed point of mixed monotone operators and applications, Appl. Anal. 31 (1998) 215-224.
[5] D. Guo, The Order Methods in Nonlinear Analysis, Shandong Technical and Science Press, Jinan, 2000 (in Chinese).
[6] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[7] C.P. Gupta, Existence and uniqueness results for a bending of an elastic beam equation at resonance, J. Math. Anal. Appl. 135 (1988) $208-225$.
[8] C.P. Gupta, Existence and uniqueness theorem for a bending of an elastic beam equation, Anal. Appl. 26 (1988) $289-304$.
[9] D.Q. Jiang, H. Liu, X. Xu, Nonresonant singular fourth-order boundary value problems, Appl. Math. Lett. 18 (2005) 69-75.
[10] R.Y. Ma, H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Anal. Appl. 59 (1995) $225-231$.
[11] R.A. Usmani, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc. 77 (1979) 327-335.
[12] Y. Yang, Fourth-order two-point boundary value problem, Proc. Amer. Math. Soc. 104 (1988) 175-180.

[^0]: ${ }^{2}$ Project supported by the National Natural Science Foundation of PR China (No. 10171010).

 * Corresponding author. School of Business, Northeast Normal University, Changchun 130024, PR China. Tel.: +864315515009.

 E-mail address: linxn989@nenu.edu.cn (X. Lin).

