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Abstract

By mixed monotone method, the existence and uniqueness are established for singular fourth-order boundary value problems.
The theorems obtained are very general and complement previous known results.
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1. Introduction

In recent years, the study of fourth-order boundary value problems have been studied extensively in the literature (see
for instance [1–3,7–12] and their references). In paper [9], the authors obtained some newest results for the singular
fourth-order boundary value problems. But there is no result on the uniqueness of solution for singular fourth-order
boundary value problems.

In this paper, first we get a unique fixed point theorem for a class of mixed monotone operators. Our idea comes from
the fixed point theorems for mixed monotone operators (see [4–6]). In virtue of the theorem, we consider the following
singular fourth-order boundary value problem:

{
x(4)(t) + �x′′(t) = �f (t, x), 0 < t < 1, � > 0,

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(1.1)

where f (t, x) ∈ C((0, 1) × (0, +∞), (0, +∞)) and � < �2.
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If � = 0, the existence of positive solutions of (1.1) has been studied in [10]. They show the existence of one
positive solution when f (t, x) is nonsingular and either superlinear or sublinear in x by employing a cone extension or
compression theorem.

2. Preliminaries

Suppose that x is a positive solution of (1.1). Then

x(t) = �
∫ 1

0

∫ 1

0
G1(t, �)G2(�, s)f (s, x(s)) ds d�, 0� t �1, (2.1)

where G1(t, s) is Green’s function to −x′′ = 0, x(0) = x(1) = 0, and G2(t, s) is Green’s function to −x′′ − �x =
0, x(0) = x(1) = 0. In particular,

G1(t, s) =
{

t (1 − s), 0� t �s�1,

s(1 − t), 0�s� t �1,

and one can show that

t (1 − t)G1(s, s)�G1(t, s)�G1(s, s) = s(1 − s), G1(t, s)� t (1 − t),

(t, s) ∈ [0, 1] × [0, 1]. (2.2)

Set � = √|�|. If � < 0, then G2(t, s) is explicitly given by

G2(t, s) =

⎧⎪⎨
⎪⎩

sinh �t sinh �(1 − s)

� sinh �
, 0� t �s�1,

sinh �s sinh �(1 − t)

� sinh �
, 0�s� t �1.

If � = 0, then G2(t, s) = G1(t, s). If 0 < � < �2, then G2(t, s) is explicitly given by

G2(t, s) =

⎧⎪⎨
⎪⎩

sin �t sin �(1 − s)

� sin �
, 0� t �s�1,

sin �s sin �(1 − t)

� sin �
, 0�s� t �1.

Clearly G2(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1).
By using (2.1) and (2.2), we see that for every positive solution x of (1.1), one has

‖x‖��
∫ 1

0

∫ 1

0
G1(�, �)G2(�, s)f (s, x(s)) ds d�,

x(t)� t (1 − t)�
∫ 1

0

∫ 1

0
G1(�, �)G2(�, s)f (s, x(s)) ds d�

� t (1 − t)‖x‖, (2.3)

where ‖x‖ = sup{|x(t)|; 0� t �1}.
Let

G(t, s) =
∫ 1

0
G1(t, �)G2(�, s) d�, (2.4)

thus by (2.1), one has

x(t) = �
∫ 1

0
G(t, s)f (s, x(s)) ds, 0� t �1, (2.5)
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and by (2.2) one has

t (1 − t)

∫ 1

0
G1(�, �)G2(�, s) d��G(t, s)� t (1 − t)

∫ 1

0
G2(�, s) d�. (2.6)

Let P be a normal cone of a Banach space E, and e ∈ P with ‖e‖ �1, e �= �. Define

Qe = {x ∈ P | there exist constants m, M > 0 such that me�x�Me}.
Now we give a definition (see [5]).

Definition 2.1. Assume A : Qe × Qe → Qe. A is said to be mixed monotone if A(x, y) is nondecreasing in x and
nonincreasing in y, i.e., if x1 �x2(x1, x2 ∈ Qe) implies A(x1, y)�A(x2, y) for any y ∈ Qe, and y1 �y2(y1, y2 ∈ Qe)

implies A(x, y1)�A(x, y2) for any x ∈ Qe. x∗ ∈ Qe is said to be a fixed point of A if A(x∗, x∗) = x∗.

Theorem 2.1. Suppose that A: Qe × Qe → Qe is a mixed monotone operator and ∃ a constant �, 0�� < 1, such that

A

(
tx,

1

t
y

)
� t�A(x, y), ∀x, y ∈ Qe, 0 < t < 1. (2.7)

Then A has a unique fixed point x∗ ∈ Qe. Moreover, for any (x0, y0) ∈ Qe × Qe,

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . .

satisfy

xn → x∗, yn → x∗,

where

‖xn − x∗‖ = o(1 − r�n

), ‖yn − x∗‖ = o(1 − r�n

),

0 < r < 1, r is a constant from (x0, y0).

Proof. From (2.7),

A(x, y) = A(tt−1x, t−1ty)� t�A
(x

t
, ty

)
, x, y ∈ Qe.

Then

A
(x

t
, ty

)
� t−�A(x, y), ∀x, y ∈ Qe, 0 < t < 1. (2.8)

For any z0 ∈ Qe, by virtue of A(z0, z0) ∈ Qe, there exist constants m, M > 0, such that

me�A(z0, z0)�Me,

and there exists a small 0 < t0 < 1 such that

t
(1−�)/2
0 Me�z0 � t

−(1−�)/2
0 me,

so we can obtain

z0t
(1−�)/2
0 �A(z0, z0)�z0t

−(1−�)/2
0 . � (2.9)

The following proof is the same as that in [5], we omit the proof.

Theorem 2.2 (Guo [5]). Suppose that A: Qe × Qe → Qe is a mixed monotone operator and ∃ a constant � ∈ (0, 1)

such that (2.7) holds. If x∗
� is a unique solution of equation

A(x, x) = �x (� > 0)
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in Qe, then ‖x∗
� − x∗

�0
‖ → 0, � → �0. If 0 < � < 1

2 , then 0 < �1 < �2 implies x∗
�1

�x∗
�2

, x∗
�1

�= x∗
�2

and

lim
�→+∞

‖x∗
�‖ = 0, lim

�→0+ ‖x∗
�‖ = +∞.

3. Singular fourth-order boundary value problem

This section discusses singular fourth-order boundary value problem{
x(4)(t) + �x′′(t) = �f (t, x(t)), 0 < t < 1, � > 0,

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(3.1)

where � < �2.
Throughout this section we assume that

f (t, x) = q(t)[g(x) + h(x)], t ∈ (0, 1), (3.2)

where

g : [0, +∞) → [0, +∞) is continuous and nondecreasing; (3.3)

h : (0, +∞) → (0, +∞) is continuous and nonincreasing. (3.4)

Let P = {x ∈ C[0, 1]|x(t)�0, ∀t ∈ [0, 1]}. Obviously, P is a normal cone of Banach space C[0, 1].

Theorem 3.1. Suppose that there exists � ∈ (0, 1) such that

g(tx)� t�g(x), (3.5)

and

h(t−1x)� t�h(x), (3.6)

for any t ∈ (0, 1) and x > 0, and q ∈ C((0, 1), (0, ∞)) satisfies∫ 1

0
s−�(1 − s)−�q(s) ds < + ∞. (3.7)

Then (3.1) has a unique positive solution x∗
�(t). And moreover, 0 < �1 < �2 implies x∗

�1
�x∗

�2
, x∗

�1
�= x∗

�2
. If � ∈ (0, 1

2 ),
then

lim
�→0+ ‖x∗

�‖ = 0, lim
�→+∞

‖x∗
�‖ = +∞.

Proof. Since (3.6) holds, let t−1x = y, one has

h(y)� t�h(ty).

Then

h(ty)� 1

t�
h(y), ∀t ∈ (0, 1), y > 0. (3.8)

Let y = 1. The above inequality is

h(t)� 1

t�
h(1), ∀t ∈ (0, 1). (3.9)
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From (3.6), (3.8) and (3.9), one has

h(t−1x)� t�h(x), h

(
1

t

)
� t�h(1),

h(tx)� 1

t�
h(x), h(t)� 1

t�
h(1), t ∈ (0, 1), x > 0. (3.10)

Similarly, from (3.5), one has

g(tx)� t�g(x), g(t)� t�g(1), t ∈ (0, 1), x > 0. (3.11)

Let t = 1/x, x > 1, one has

g(x)�x�g(1), x�1. (3.12)

Let e(t) = t (1 − t), and we define

Qe =
{
x ∈ C[0, 1]

∣∣∣∣ 1

M
t(1 − t)�x(t)�Mt(1 − t), t ∈ [0, 1]

}
, (3.13)

where M > 1 is chosen such that

M > max

{{∫ 1

0

∫ 1

0
G2(�, s) d�q(s)�[g(1) + s−�(1 − s)−�h(1)] ds

}1/(1−�)

,

{∫ 1

0

∫ 1

0
G1(�, �)G2(�, s) d�q(s)�[h(1) + s�(1 − s)�g(1)] ds

}−1/(1−�)
}

. (3.14)

For any x, y ∈ Qe, we define

A�(x, y)(t) = �
∫ 1

0
G(t, s)q(s)[g(x(s)) + h(y(s))] ds, ∀t ∈ [0, 1]. (3.15)

First we show that A� : Qe × Qe → Qe.
Let x, y ∈ Qe, from (3.11) and (3.12), we have

g(x(t))�g(Mt(1 − t))�g(M)�M�g(1), t ∈ (0, 1),

and from (3.10) we have

h(y(t))�h

(
1

M
t(1 − t)

)
� t−�(1 − t)−�h

(
1

M

)
�M�t−�(1 − t)−�h(1), t ∈ (0, 1).

Then, from (2.6) and (3.15), we have

A�(x, y)(t)� t (1 − t)

∫ 1

0

∫ 1

0
G2(�, s) d�q(s)M��[g(1) + s−�(1 − s)−�h(1)] ds

�Mt(1 − t), t ∈ [0, 1].
On the other hand, for any x, y ∈ Qe, from (3.10) and (3.11), we have

g(x(t))�g

(
1

M
t(1 − t)

)
� t�(1 − t)�g

(
1

M

)
� t�(1 − t)�

1

M� g(1),

and

h(y(t))�h(Mt(1 − t))�h(M) = h

(
1

1/M

)
� 1

M� h(1), t ∈ (0, 1).
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Thus, from (2.6) and (3.15), we have

A�(x, y)(t)� t (1 − t)

∫ 1

0

∫ 1

0
G1(�, �)G2(�, s) d�q(s)M−��[h(1) + s�(1 − s)�g(1)] ds

� 1

M
t(1 − t), t ∈ [0, 1].

So, A� is well defined and A�(Qe × Qe) ⊂ Qe.
Next, for any l ∈ (0, 1), one has

A�(lx, l−1y)(t) = �
∫ 1

0
G(t, s)q(s)[g(lx(s)) + h(l−1y(s))] ds

��
∫ 1

0
G(t, s)q(s)[l�g(x(s)) + l�h(y(s))] ds

= l�A�(x, y)(t), t ∈ [0, 1].
So the conditions of Theorems 2.1 and 2.2 hold. Therefore there exists a unique x∗

� ∈ Qe such that A�(x
∗, x∗) = x∗

� .

It is easy to check that x∗
� is a unique positive solution of (3.1) for given � > 0. Moreover, Theorem 2.2 means that if

0 < �1 < �2, then x∗
�1

(t)�x∗
�2

(t), x∗
�1

(t) �= x∗
�2

(t) and if � ∈ (0, 1
2 ), then

lim
�→0+ ‖x∗

�‖ = 0, lim
�→+∞

‖x∗
�‖ = +∞.

This completes the proof. �

Example. Consider the following singular fourth-order boundary value problem:{
x(4)(t) + �x′′(t) = �(�xa + x−b), 0 < t < 1,

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(3.16)

where � < �2, �, a, b > 0, ��0.

Applying Theorem 3.1, we can find (3.16) has a unique positive solution x∗
�(t) provided

max{a, b} < 1. (3.17)

In addition, 0 < �1 < �2 implies x∗
�1

�x∗
�2

, x∗
�1

�= x∗
�2

. If max{a, b} ∈ (0, 1
2 ), then

lim
�→0+ ‖x∗

�‖ = 0, lim
�→+∞

‖x∗
�‖ = +∞.

To see that, we put

� = max{a, b}, q(t) = 1, g(x) = �xa, h(x) = x−b.

Thus 0 < � < 1 and

g(tx) = tag(x)� t�g(x), h(t−1x) = tbh(x)� t�h(x),

for any t ∈ (0, 1) and x > 0, and

∫ 1

0
s−�(1 − s)−� ds < + ∞,

thus all conditions in Theorem 3.1 are satisfied.
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