26,206 research outputs found

    Delayed Onset and Fast Rise of Prompt Optical-UV Emission from Gamma-Ray Bursts in Molecular Clouds

    Full text link
    Observations imply that long \gamma-ray bursts (GRBs) are originated from explosions of massive stars, therefore they may occur in the molecular clouds where their progenitors were born. We show here that the prompt optical-UV emission from GRBs may be delayed due to the dust extinction, which can well explain the observed optical delayed onset and fast rise in GRB 080319B. The density and the size of the molecular cloud around GRB 080319B are roughly constrained to be \sim10^3cm^{-3} and \sim 8pc, respectively. We also investigate the other GRBs with prompt optical-UV data, and find similar values of the densities and sizes of the local molecular clouds. The future observations of prompt optical-UV emission from GRBs in subsecond timescale, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide more evidence and probes of the local GRB environments.Comment: 15 pages, 5 figures, RAA 13 (2013) 57-70, typo correctio

    Implications of Fermi-LAT observations on the origin of IceCube neutrinos

    Full text link
    The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pppp and pγp\gamma interactions, we use the \fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, >1019>10^{19}eV, CRs and the 1−1001-100~PeV CRs that produce the IC detected TeV-PeV neutrinos.Comment: JCAP accepted version; 8 pages, 2 figs; discussion on blazar origin added; conclusion unchange

    Exact Cosmological Solutions of f(R)f(R) Theories via Hojman Symmetry

    Get PDF
    Nowadays, f(R)f(R) theory has been one of the leading modified gravity theories to explain the current accelerated expansion of the universe, without invoking dark energy. It is of interest to find the exact cosmological solutions of f(R)f(R) theories. Besides other methods, symmetry has been proved as a powerful tool to find exact solutions. On the other hand, symmetry might hint the deep physical structure of a theory, and hence considering symmetry is also well motivated. As is well known, Noether symmetry has been extensively used in physics. Recently, the so-called Hojman symmetry was also considered in the literature. Hojman symmetry directly deals with the equations of motion, rather than Lagrangian or Hamiltonian, unlike Noether symmetry. In this work, we consider Hojman symmetry in f(R)f(R) theories in both the metric and Palatini formalisms, and find the corresponding exact cosmological solutions of f(R)f(R) theories via Hojman symmetry. There exist some new solutions significantly different from the ones obtained by using Noether symmetry in f(R)f(R) theories. To our knowledge, they also have not been found previously in the literature. This work confirms that Hojman symmetry can bring new features to cosmology and gravity theories.Comment: 16 pages, revtex4; v2: discussions added, Nucl. Phys. B in press; v3: published version. arXiv admin note: text overlap with arXiv:1505.0754
    • …
    corecore