70,437 research outputs found
Experimental observation of carrier-envelope phase effects by multicycle pulses
We present an experimental and theoretical study of carrier-envelope phase
(CEP) effects on the population transfer between two bound atomic states
interacting with pulses consisting of many cycles. Using intense
radio-frequency pulse with Rabi frequency of the order of the atomic transition
frequency, we investigated the influence of CEP on the control of phase
dependent multi-photon transitions between the Zeeman sub-levels of the ground
state of Rb. Our scheme has no limitation on the duration of the pulses.
Extending the CEP control to longer pulses creates interesting possibilities to
generate pulses with accuracy that is better then the period of optical
oscillations.Comment: 8 Pages, 6 Figure
Topology design and performance analysis of an integrated communication network
A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix
Constraints on singlet right-handed neutrinos coming from the -width
We study the constraints on masses and mixing angles imposed by the measured
invisible width, in a model in which a singlet right-handed neutrino
mixes with all the Standard Model neutrinos.Comment: Revtex, 7 pages, two figures available from the authors, preprint
IFT-P.040/92 IFUSP/P-1023/9
Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1-xRhxO4 (0\leqx\leq1)
Sr2IrO4 is a magnetic insulator driven by spin-orbit interaction (SOI)
whereas the isoelectronic and isostructural Sr2RhO4 is a paramagnetic metal.
The contrasting ground states have been shown to result from the critical role
of the strong SOI in the iridate. Our investigation of structural, transport,
magnetic and thermal properties reveals that substituting 4d Rh4+ (4d5) ions
for 5d Ir4+(5d5) ions in Sr2IrO4 directly reduces the SOI and rebalances the
competing energies so profoundly that it generates a rich phase diagram for
Sr2Ir1-xRhxO4 featuring two major effects: (1) Light Rh doping (0\leqx\leq0.16)
prompts a simultaneous and precipitous drop in both the electrical resistivity
and the magnetic ordering temperature TC, which is suppressed to zero at x =
0.16 from 240 K at x=0. (2) However, with heavier Rh doping (0.24< x<0.85
(\pm0.05)) disorder scattering leads to localized states and a return to an
insulating state with spin frustration and exotic magnetic behavior that only
disappears near x=1. The intricacy of Sr2Ir1-xRhxO4 is further highlighted by
comparison with Sr2Ir1-xRuxO4 where Ru4+(4d4) drives a direct crossover from
the insulating to metallic states.Comment: 5 figure
Magnetic nanocomposites at microwave frequencies
Most conventional magnetic materials used in the electronic devices are
ferrites, which are composed of micrometer-size grains. But ferrites have small
saturation magnetization, therefore the performance at GHz frequencies is
rather poor. That is why functionalized nanocomposites comprising magnetic
nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm,
and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have
a significant potential for the electronics industry. When the size of the
nanoparticles is smaller than the critical size for multidomain formation,
these nanocomposites can be regarded as an ensemble of particles in
single-domain states and the losses (due for example to eddy currents) are
expected to be relatively small. Here we review the theory of magnetism in such
materials, and we present a novel measurement method used for the
characterization of the electromagnetic properties of composites with
nanomagnetic insertions. We also present a few experimental results obtained on
composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table
Decay of the Z Boson into Scalar Particles
In extensions of the standard model, light scalar particles are often
possible because of symmetry considerations. We study the decay of the Z boson
into such particles. In particular, we consider for illustration the scalar
sector of a recently proposed model of the 17-keV neutrino which satisfies all
laboratory, astrophysical, and cosmological constraints.Comment: 11 pages (2 figures, not included) (Revised, Oct 1992). Some
equations have been corrected and 1 figure has been eliminate
Thermal transistor: Heat flux switching and modulating
Thermal transistor is an efficient heat control device which can act as a
heat switch as well as a heat modulator. In this paper, we study systematically
one-dimensional and two-dimensional thermal transistors. In particular, we show
how to improve significantly the efficiency of the one-dimensional thermal
transistor. The study is also extended to the design of two-dimensional thermal
transistor by coupling different anharmonic lattices such as the
Frenkel-Kontorova and the Fermi-Pasta-Ulam lattices. Analogy between anharmonic
lattices and single-walled carbon nanotube is drawn and possible experimental
realization with multi-walled nanotube is suggested.Comment: To appear in J. Phys. Soc. Jp
Locating Depots for Capacitated Vehicle Routing
We study a location-routing problem in the context of capacitated vehicle
routing. The input is a set of demand locations in a metric space and a fleet
of k vehicles each of capacity Q. The objective is to locate k depots, one for
each vehicle, and compute routes for the vehicles so that all demands are
satisfied and the total cost is minimized. Our main result is a constant-factor
approximation algorithm for this problem. To achieve this result, we reduce to
the k-median-forest problem, which generalizes both k-median and minimum
spanning tree, and which might be of independent interest. We give a
(3+c)-approximation algorithm for k-median-forest, which leads to a
(12+c)-approximation algorithm for the above location-routing problem, for any
constant c>0. The algorithm for k-median-forest is just t-swap local search,
and we prove that it has locality gap 3+2/t; this generalizes the corresponding
result known for k-median. Finally we consider the "non-uniform"
k-median-forest problem which has different cost functions for the MST and
k-median parts. We show that the locality gap for this problem is unbounded
even under multi-swaps, which contrasts with the uniform case. Nevertheless, we
obtain a constant-factor approximation algorithm, using an LP based approach.Comment: 12 pages, 1 figur
- …