18,146 research outputs found

    The Application of the Cognitive Radio in the Aviation Communication Spectrum Management

    Get PDF
    AbstractIt is concerned that the aviation communication system is interfered by the inner and outside interference. Because of the electromagnetic spectrum is limited, it must be controlled and managed in order to use in aviation communication. The cognitive radio (CR) can perceive the electromagnetic environment automatically, search the spectrum holes, and adjust the signal parameters of both sides by communication protocols and algorithms to best situation. This paper discusses the CR and the application in the spectrum management of aviation communications

    Segatron: Segment-Aware Transformer for Language Modeling and Understanding

    Full text link
    Transformers are powerful for sequence modeling. Nearly all state-of-the-art language models and pre-trained language models are based on the Transformer architecture. However, it distinguishes sequential tokens only with the token position index. We hypothesize that better contextual representations can be generated from the Transformer with richer positional information. To verify this, we propose a segment-aware Transformer (Segatron), by replacing the original token position encoding with a combined position encoding of paragraph, sentence, and token. We first introduce the segment-aware mechanism to Transformer-XL, which is a popular Transformer-based language model with memory extension and relative position encoding. We find that our method can further improve the Transformer-XL base model and large model, achieving 17.1 perplexity on the WikiText-103 dataset. We further investigate the pre-training masked language modeling task with Segatron. Experimental results show that BERT pre-trained with Segatron (SegaBERT) can outperform BERT with vanilla Transformer on various NLP tasks, and outperforms RoBERTa on zero-shot sentence representation learning.Comment: Accepted by AAAI 202

    Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy

    Full text link
    Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for the next generation electronics and optoelectronics devices. The monolayer MoS2 can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons (MNRs), in which theoretical calculations have predicted novel properties. However, little work has been carried out in the experimental exploration of MNRs with a width of less than 20 nm where the geometrical confinement can lead to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15 nm by direct helium ion beam milling. High optical anisotropy of these MNRs is revealed by the systematic study of optical contrast and Raman spectroscopy. The Raman modes in MNRs show strong polarization dependence. Besides that the E' and A'1 peaks are broadened by the phonon-confinement effect, the modes corresponding to singularities of vibrational density of states are activated by edges. The peculiar polarization behavior of Raman modes can be explained by the anisotropy of light absorption in MNRs, which is evidenced by the polarized optical contrast. The study opens the possibility to explore quasione-dimensional materials with high optical anisotropy from isotropic 2D family of transition metal dichalcogenides

    Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge.

    Full text link
    Artificial intelligence has rapidly evolved from the experimental phase to the implementation phase in many image-driven clinical disciplines, including ophthalmology. A combination of the increasing availability of large datasets and computing power with revolutionary progress in deep learning has created unprecedented opportunities for major breakthrough improvements in the performance and accuracy of automated diagnoses that primarily focus on image recognition and feature detection. Such an automated disease classification would significantly improve the accessibility, efficiency, and cost-effectiveness of eye care systems where it is less dependent on human input, potentially enabling diagnosis to be cheaper, quicker, and more consistent. Although this technology will have a profound impact on clinical flow and practice patterns sooner or later, translating such a technology into clinical practice is challenging and requires similar levels of accountability and effectiveness as any new medication or medical device due to the potential problems of bias, and ethical, medical, and legal issues that might arise. The objective of this review is to summarize the opportunities and challenges of this transition and to facilitate the integration of artificial intelligence (AI) into routine clinical practice based on our best understanding and experience in this area
    corecore