2,084 research outputs found
Personalization in social retargeting - A field experiment
This study compares the effectiveness of product- and category-specific advertising personalization in Social Retargeting. Social Retargeting combines the features of social advertising, targeting consumers based on social connections, and retargeting, using consumers' browsing behavior to personalize ad content. We conducted a large-scale randomized field experiment in collaboration with a major e-retailer. Contradicting prior empirical findings, our results indicate that product-specific ads outperform less personalized category-specific ads. While theory suggests a positive effect, we find that social targeting decreases the performance of personalized ads. Surprisingly, socially targeted consumers are not more responsive to product-specific ads. We show that our results remain robust and are driven by ad personalization when controlling for temporal targeting and how deep consumers browse the e-retailer's website. Our study contributes to the IS and marketing literature related to personalization in digital advertising and provides valuable suggestions for firms' personalization strategies
Grouping-Enabled and Privacy-Enhancing Communications Schemes for VANETs
Open Access Bookpublished_or_final_versio
Negative-coupling resonances in pump-coupled lasers
We consider coupled lasers, where the intensity deviations from the steady
state, modulate the pump of the other lasers. Most of our results are for two
lasers where the coupling constants are of opposite sign. This leads to a Hopf
bifurcation to periodic output for weak coupling. As the magnitude of the
coupling constants is increased (negatively) we observe novel amplitude effects
such as a weak coupling resonance peak and, strong coupling subharmonic
resonances and chaos. In the weak coupling regime the output is predicted by a
set of slow evolution amplitude equations. Pulsating solutions in the strong
coupling limit are described by discrete map derived from the original model.Comment: 29 pages with 8 figures Physica D, in pres
Observation of Enhanced Beaming from Photonic Crystal Waveguides
We report on the experimental observation of the beaming effect in photonic
crystals enhanced via surface modes. We experimentally map the spatial field
distribution of energy emitted from a subwavelength photonic crystal waveguide
into free-space, rendering with crisp clarity the diffractionless beaming of
energy. Our experimental data agree well with our numerical studies of the
beaming enhancement in photonic crystals with modulated surfaces. Without loss
of generality, we study the beaming effect in a photonic crystal scaled to
microwave frequencies and demonstrate the technological capacity to deliver
long-range, wavelength-scaled beaming of energy.Comment: 4 pages, 6 figure
factorization of exclusive processes
We prove factorization theorem in perturbative QCD (PQCD) for exclusive
processes by considering and . The relevant form factors are expressed as the convolution of hard
amplitudes with two-parton meson wave functions in the impact parameter
space, being conjugate to the parton transverse momenta . The point is
that on-shell valence partons carry longitudinal momenta initially, and acquire
through collinear gluon exchanges. The -dependent two-parton wave
functions with an appropriate path for the Wilson links are gauge-invariant.
The hard amplitudes, defined as the difference between the parton-level
diagrams of on-shell external particles and their collinear approximation, are
also gauge-invariant. We compare the predictions for two-body nonleptonic
meson decays derived from factorization (the PQCD approach) and from
collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure
Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs
In a class of F-theory SU(5) GUTs the low energy chiral mass spectrum is
obtained from rank one fermion mass textures with a hierarchical structure
organised by U(1) symmetries embedded in the exceptional E_8 group. In these
theories chiral fields reside on matter `curves' and the tree level masses are
computed from integrals of overlapping wavefuctions of the particles at the
triple intersection points. This calculation requires knowledge of the exact
form of the wavefuctions. In this work we propose a way to obtain a reliable
estimate of the various quantities which determine the strength of the Yukawa
couplings. We use previous analysis of KK threshold effects to determine the
(ratios of) heavy mass scales of the theory which are involved in the
normalization of the wave functions. We consider similar effects from the
chiral spectrum of these models and discuss possible constraints on the
emerging matter content. In this approach, we find that the Yukawa couplings
can be determined solely from the U(1) charges of the states in the
`intersection' and the torsion which is a topological invariant quantity. We
apply the results to a viable SU(5) model with minimal spectrum which satisfies
all the constraints imposed by our analysis. We use renormalization group
analysis to estimate the top and bottom masses and find that they are in
agreement with the experimental values.Comment: 28 pages, 2 figure
Applicability of perturbative QCD to decays
We develop perturbative QCD factorization theorem for the semileptonic heavy
baryon decay , whose form factors are
expressed as the convolutions of hard quark decay amplitudes with universal
and baryon wave functions. Large logarithmic
corrections are organized to all orders by the Sudakov resummation, which
renders perturbative expansions more reliable. It is observed that perturbative
QCD is applicable to decays for velocity transfer
greater than 1.2. Under requirement of heavy quark symmetry, we predict the
branching ratio , and determine
the and baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results
are changed, but the conclusion is the sam
Bonding mechanism from the impact of thermally sprayed solid particles
Power particles are mainly in solid state prior to impact on substrates from high velocity oxy-fuel (HVOF) thermal spraying. The bonding between particles and substrates is critical to ensure the quality of coating. Finite element analysis (FEA) models are developed to simulate the impingement process of solid particle impact on substrates. This numerical study examines the bonding mechanism between particles and substrates and establishes the critical particle impact parameters for bonding. Considering the morphology of particles, the shear-instability–based method is applied to all the particles, and the energy-based method is employed only for spherical particles. The particles are given the properties of widely used WC-Co powder for HVOF thermally sprayed coatings. The numerical results confirm that in the HVOF process, the kinetic energy of the particle prior to impact plays the most dominant role in particle stress localization and melting of the interfacial contact region. The critical impact parameters, such as particle velocity and temperature, are shown to be affected by the shape of particles, while higher impact velocity is required for highly nonspherical powder
- …