50 research outputs found

    Automated Identification of Cell Type Specific Genes in the Mouse Brain by Image Computing of Expression Patterns

    Get PDF
    Background: Differential gene expression patterns in cells of the mammalian brain result in the morphological, connectional, and functional diversity of cells. A wide variety of studies have shown that certain genes are expressed only in specific cell-types. Analysis of cell-type-specific gene expression patterns can provide insights into the relationship between genes, connectivity, brain regions, and cell-types. However, automated methods for identifying cell-type-specific genes are lacking to date. Results: Here, we describe a set of computational methods for identifying cell-type-specific genes in the mouse brain by automated image computing of in situ hybridization (ISH) expression patterns. We applied invariant image feature descriptors to capture local gene expression information from cellular-resolution ISH images. We then built image-level representations by applying vector quantization on the image descriptors. We employed regularized learning methods for classifying genes specifically expressed in different brain cell-types. These methods can also rank image features based on their discriminative power. We used a data set of 2,872 genes from the Allen Brain Atlas in the experiments. Results showed that our methods are predictive of cell-type-specificity of genes. Our classifiers achieved AUC values of approximately 87% when the enrichment level is set to 20. In addition, we showed that the highly-ranked image features captured the relationship between cell-types. Conclusions: Overall, our results showed that automated image computing methods could potentially be used to identify cell-type-specific genes in the mouse brain

    Towards Discriminative Representations with Contrastive Instances for Real-Time UAV Tracking

    Full text link
    Maintaining high efficiency and high precision are two fundamental challenges in UAV tracking due to the constraints of computing resources, battery capacity, and UAV maximum load. Discriminative correlation filters (DCF)-based trackers can yield high efficiency on a single CPU but with inferior precision. Lightweight Deep learning (DL)-based trackers can achieve a good balance between efficiency and precision but performance gains are limited by the compression rate. High compression rate often leads to poor discriminative representations. To this end, this paper aims to enhance the discriminative power of feature representations from a new feature-learning perspective. Specifically, we attempt to learn more disciminative representations with contrastive instances for UAV tracking in a simple yet effective manner, which not only requires no manual annotations but also allows for developing and deploying a lightweight model. We are the first to explore contrastive learning for UAV tracking. Extensive experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and VisDrone2018, show that the proposed DRCI tracker significantly outperforms state-of-the-art UAV tracking methods.Comment: arXiv admin note: substantial text overlap with arXiv:2308.1026

    Learning Disentangled Representation with Mutual Information Maximization for Real-Time UAV Tracking

    Full text link
    Efficiency has been a critical problem in UAV tracking due to limitations in computation resources, battery capacity, and unmanned aerial vehicle maximum load. Although discriminative correlation filters (DCF)-based trackers prevail in this field for their favorable efficiency, some recently proposed lightweight deep learning (DL)-based trackers using model compression demonstrated quite remarkable CPU efficiency as well as precision. Unfortunately, the model compression methods utilized by these works, though simple, are still unable to achieve satisfying tracking precision with higher compression rates. This paper aims to exploit disentangled representation learning with mutual information maximization (DR-MIM) to further improve DL-based trackers' precision and efficiency for UAV tracking. The proposed disentangled representation separates the feature into an identity-related and an identity-unrelated features. Only the latter is used, which enhances the effectiveness of the feature representation for subsequent classification and regression tasks. Extensive experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and VisDrone2018, show that our DR-MIM tracker significantly outperforms state-of-the-art UAV tracking methods

    Deep convolutional neural networks for annotating gene expression patterns in the mouse brain

    Full text link
    Abstract Background Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. Results We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Conclusions Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.http://deepblue.lib.umich.edu/bitstream/2027.42/134736/1/12859_2015_Article_553.pd

    Deep convolutional neural networks for annotating gene expression patterns in the mouse brain

    Get PDF
    Abstract Background Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. Results We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Conclusions Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.http://deepblue.lib.umich.edu/bitstream/2027.42/111637/1/12859_2015_Article_553.pd

    Deep Convolutional Neural Networks for Annotating Gene Expression Patterns in the Mouse Brain

    Get PDF
    Background: Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. Results: We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Conclusions: Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets

    Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization

    Full text link
    We tackle the problem of graph out-of-distribution (OOD) generalization. Existing graph OOD algorithms either rely on restricted assumptions or fail to exploit environment information in training data. In this work, we propose to simultaneously incorporate label and environment causal independence (LECI) to fully make use of label and environment information, thereby addressing the challenges faced by prior methods on identifying causal and invariant subgraphs. We further develop an adversarial training strategy to jointly optimize these two properties for casual subgraph discovery with theoretical guarantees. Extensive experiments and analysis show that LECI significantly outperforms prior methods on both synthetic and real-world datasets, establishing LECI as a practical and effective solution for graph OOD generalization

    A Robust Deep Model for Improved Classification of AD/MCI Patients

    Get PDF
    Accurate classification of Alzheimer\u27s disease (AD) and its prodromal stage, mild cognitive impairment (MCI), plays a critical role in possibly preventing progression of memory impairment and improving quality of life for AD patients. Among many research tasks, it is of a particular interest to identify noninvasive imaging biomarkers for AD diagnosis. In this paper, we present a robust deep learning system to identify different progression stages of AD patients based on MRI and PET scans. We utilized the dropout technique to improve classical deep learning by preventing its weight coadaptation, which is a typical cause of overfitting in deep learning. In addition, we incorporated stability selection, an adaptive learning factor, and a multitask learning strategy into the deep learning framework. We applied the proposed method to the ADNI dataset, and conducted experiments for AD and MCI conversion diagnosis. Experimental results showed that the dropout technique is very effective in AD diagnosis, improving the classification accuracies by 5.9% on average as compared to the classical deep learning methods
    corecore