42 research outputs found

    Immunization against inhibin DNA vaccine as an alternative therapeutic for improving follicle development and reproductive performance in beef cattle

    Get PDF
    The objective of the present study was to investigate the potential role of immunization against INH on follicular development, serum reproductive hormone (FSH, E2, and P4) concentrations, and reproductive performance in beef cattle. A total of 196 non-lactating female beef cattle (4-5 years old) with identical calving records (3 records) were immunized with 0.5, 1.0, 1.5, or 2.0 mg [(T1, n = 58), (T2, n = 46), (T3, n = 42) and (T4, n = 36), respectively] of the pcISI plasmid. The control (C) group (n = 14) was immunized with 1.0 mL 0.9% saline. At 21d after primary immunization, all beef cattle were boosted with half of the primary immunization dose. On day 10 after primary immunization, the beef cattle immunized with INH DNA vaccine evidently induced anti-INH antibody except for the T1 group. The T3 group had the greatest P/N value peak among all the groups. The anti-INH antibody positive rates in T2, T3 and T4 groups were significantly higher than that in C and T1 groups. RIA results indicated that serum FSH concentration in T2 group increased markedly on day 45 after booster immunization; the E2 amount in T3 group was significantly increased on day 10 after primary immunization, and the levels of E2 also improved in T2 and T3 groups after booster immunization; the P4 concentration in T2 group was significantly improved on day 21 after primary immunization. Ultrasonography results revealed that the follicles with different diameter sizes were increased, meanwhile, the diameter and growth speed of ovulatory follicle were significantly increased. Furthermore, the rates of estrous, ovulation, conception, and twinning rate were also significantly enhanced. These findings clearly illustrated that INH DNA vaccine was capable of promoting the follicle development, thereby improving the behavioral of estrous and ovulation, eventually leading to an augment in the conception rates and twinning rate of beef cattle

    The complete chloroplast genome and phylogenetic analysis of Gentiana arethusae Burkill (Gentianaceae) from China

    No full text
    Gentiana arethusae Burkill is a perennial herb classified in the Gentianaceae. In this study, the complete chloroplast genome of G. arethusae was sequenced and analyzed. The chloroplast genome is 137,458 bp in length and encodes a total of 116 genes, including 71 protein-coding, 37 tRNA, and eight rRNA genes. The genome has a low GC content of 38.0%. Phylogenetic analysis of the genome of G. arethusae resolved it in a clade with Gentiana obconica and Gentiana veitchiorum. The complete chloroplast genome of G. arethusae will be helpful to study the genetic diversity and phylogenetics of the Gentianaceae

    Genetic Diversity and Population Structure: Implications for Conservation of Wild Soybean (Glycine soja Sieb. et Zucc) Based on Nuclear and Chloroplast Microsatellite Variation

    Get PDF
    is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and th

    The complete chloroplast genome of Lilium rosthornii Diels (Liliopsida: Liliaceae) from Hunan, China

    No full text
    Lilium rosthornii is the perennial herbaceous bulbous plant belonging to the Lily of the Liliaceae, with high ornamental value and medicinal values. In this present study, we sequenced the complete chloroplast genome of Lilium rosthornii by Illumina Hiseq X Ten and PacBio RS technologies firstly. The genome size of L. rosthornii, was 152,242bp, with typical tetragonal structure: one large single-copy (LSC, 81,875 bp), one small single-copy (SSC, 17,553 bp), and a pair of inverted repeat regions (IRs, 26,407 bp). The overall GC content was 37.02%. The complete genome contained 131 genes, including 85 protein-coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis placed L. rosthornii under the family Liliaceae

    MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1

    No full text
    Background/Aims: Irritable bowel syndrome with diarrhoea (IBS-D) is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs) are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i) identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii) verify in vitro whether occludin (OCLN) and zonula occludens 1 (ZO1/TJP1) were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii) determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. Methods: The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs) and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. Results: There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further studies confirmed that OCLN and ZO1 were direct targets of miR-144. Additionally, intestinal hyperpermeability was enhanced by miR-144 up-regulation and attenuated by miR-144 down-regulation in IBS-D rat colonic epithelial cells. Moreover, rescue experiments showed that overexpression of OCLN and ZO1 significantly eliminated the inhibitory effect of miR-144, which showed a stronger effect on the attenuation of intestinal hyperpermeability. Conclusion: Up-regulation of miR-144 could promote intestinal hyperpermeability and impair the protective effect of the epithelial barrier by directly targeting OCLN and ZO1. miR-144 is likely a key regulator of intestinal hyperpermeability and could be a potential therapeutic target for IBS-D
    corecore