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Abstract
In this paper, a two-level domain decomposition algorithm for linear
complementarity problem (LCP) is introduced. Inner and outer approximation
sequences to the solution of LCP are generated by the proposed algorithm. The
algorithm is proved to be convergent and can reach the solution of the problem
within finite steps. Some simple numerical results are presented to show the
effectiveness of the proposed algorithm.

1 Introduction
In this paper, we consider the following linear complementarity problem (LCP) of finding
u ∈ Rn such that

u ≥ , F(u) ≥ , uTF(u) = , (.)

where F(u) = Au + b, A is anM-matrix, b ∈ Rn is a given vector.
LCP is a wide class of problems and has many applications in such fields as physics,

optimum control, economics, etc. As a result of their broad applications, the literature in
this field has benefited from contributions made by mathematicians, computer scientists,
engineers ofmany kinds, and economists of diverse expertise. There aremany surveys and
special volumes (see, e.g., [–] and the references therein).
Domain decomposition techniques are widely used to solve PDEs since ’s. This kind

of techniques attracts much attention, since it is portable and easy to be parallelized on
parallel machines. It has been applied to solve various linear and nonlinear variational
inequality problems, and the numerical results show that it is efficient, see, for example,
[–]. It contains many algorithms, such as classical additive Schwarz method (AS), mul-
tiplicative Schwarzmethod (MS), restricted additive Schwarzmethod (RAS), and so on. In
[], a variant of Schwarz algorithm, called two-level additive Schwarz algorithm (TLAS),
was proposed for the solution of a kind of linear obstacle problem. Thismethod can divide
the original problem into subproblems in an ‘efficient’ way. In other words, the domain
is decomposed in different way at each step and the dimensions of the subproblems we
deal with are lower than that of the original problem. The numerical results show that
the TLAS is significant. In [], the TLAS is extended for the nonlinear complementarity
problem with anM-function. The algorithm offers a possibility of making use of fast non-
linear solvers to the subproblems, and the choice of the initial is much easier than that of
the TLAS. Another efficient way to solve problem (.) is given by semismooth Newton
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methods (e.g., see [, ]). This method is attractive, because it converges rapidly from
any sufficiently good initial iterate, and the subproblems are also systems of equation. An
active set strategy is also an efficient way to solve discrete obstacle problems, see, for ex-
ample, [–]. Based on some kind of active set strategy, the discrete obstacle problem
can be reduced to a sequence of linear problems, which are then solved by some efficient
methods. In this paper, we combine the idea of the active set strategy with the thought of
TLAS, i.e., constructing inner and outer approximation sequences to the solution of LCP,
and present a two-level domain decomposition algorithm. As we will see in the sequel,
the main difference between the two-level domain decomposition algorithm (TLDD) and
TLAS discussed in [] lies in the way of constructing the outer approximation of the solu-
tion.What’smore, with the idea of an active set strategy, the TLDDmay be easier extended
to other problems, such as bilateral obstacle problem.
The paper in the sequel is organized as follows. In Section , we give some preliminaries

and present a two-level domain decomposition algorithm for problem (.). In Section ,
we discuss the convergence of the algorithm proposed in Section . In Section , we report
some simple numerical results.

2 Preliminaries and two-level domain decomposition algorithm
In this section, we give some preliminaries and present a two-level domain decomposition
algorithm for solving problem (.).
Firstly, similarly to [, ], we introduce two operators, which will be useful in the con-

struction of the algorithm in this paper. Let N = {, , . . . ,n}. Let I , J be a nonoverlapping
decomposition of N . That is, N = I ∪ J and I ∩ J = ∅. For any v ∈ Rn, we introduce the
following linear problem of finding w ∈ Rn such that

wI = vI , FJ (w) = , (.)

where vI denotes the subvector of v with elements vj (j ∈ I). Similar notation will be used
in the sequel. We denote linear system (.) above by the operation form

w =GJ (v).

Similarly, we introduce the following problem of finding w ∈ Rn such that

wI = vI , min
{
FJ (w),wJ

}
= . (.)

We denote nonlinear problem (.) above by the operation form

w = TJ (v).

Theorem . [] Problem (.) is equivalent to the following variational inequality of find-
ing u ∈ Rn such that

(
F(u), v – u

) ≥ , ∀v ∈ Rn. (.)
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Theorem . [] The solution of problem (.), or equivalently (.), is unique and is the
minimal element of S, where S is the supersolution set of problem (.), which is defined by

S =
{
v ∈ Rn : v≥  and F(v)≥ 

}
.

Similarly, we have the following theorem.

Theorem. The solution of problem (.), or equivalently (.), is unique and is themax-
imal element of U , where U is the subsolution set of problem (.), which is defined by

U =
{
v ∈ Rn : v ≥  and min

{
v,F(v)

} ≤ 
}
.

Based on Theorems . and ., we can construct the following additive Schwarz algo-
rithm for LCP (.).

Algorithm . (Additive Schwarz algorithm with two subdomains) Let I and J be a de-
composition of N , i.e., I ∪ J =N . Given u ∈ S. For k = , , . . . , do the following two steps
until convergence.
Step : Solve the following two subproblems in parallel

⎧⎨
⎩
find uk, ∈ Kk, such that

(FI(uk,), vI – uk,I ) ≥ , ∀v ∈ Kk,,
⎧⎨
⎩

find uk, ∈ Kk, such that

(FJ (uk,), vJ – uk,J ) ≥ , ∀v ∈ Kk,,

where

Kk, =
{
v ∈ Rn :

(
v – uk

)
N\I = 

}
,

Kk, =
{
v ∈ Rn :

(
v – uk

)
N\J = 

}
.

Here we define N \ I = {j ∈N : j /∈ I} for any subset I of N .
Step : uk+ =min(uk,,uk,), where ‘min’ should be understood by componentwise.

Similar to the proof of Theorem . in [], we have the following convergence theorem
for Algorithm ..

Theorem. Let the sequence {uk} be generated byAlgorithm .. For k = , , . . . ,we have
(a) uk,i ≤ uk , i = ,  and then uk+ ≤ uk ,
(b) uk,i ∈ S, i = ,  and then uk+ ∈ S,
(c) limk→∞ uk = u,

where u is the solution of problem (.).

In what follows, we let N = {j ∈ N : uj = }, N+ = {j ∈ N : uj > }, where u is the so-
lution of problem (.). If u ∈ S, then the sequence {uk} generated by Algorithm . is
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in S and monotonically decreases and converges to the solution. Hence, if we define the
coincidence set of uk as follows

Ik =
{
j ∈N : ukj = 

}
, (.)

we have by the monotonicity of {uk} such that

Ik ⊆ Ik+ ⊆N, k = , , . . . .

Actually, this gives inner approximations for the coincidence set N.
There aremany algorithms based on active set strategy. Based on some kind of criterion,

the index set is divided into two parts: active set and inactive set.We only need to calculate
the simplified linear system related to the inactive set. We also draw on the experience of
active set strategy to derive the outer approximations for the coincidence set. To be precise,
we define

Ok =
{
j ∈ N : wk

j =  and Fj
(
wk) ≥ 

}
, Lk =N \Ok , k = , , . . . , (.)

and define Ck as

Ck =N \ (
Ik ∪ Lk

)
. (.)

Ck may contain both elements of N and N+. So, it is called the critical subsets. Let

Ĉk = Ck ∪Hk , (.)

where Hk is a subset of N corresponding to an overlapping of the subsets associated with
Lk and Ck . That is Hk ⊂ Lk and Hk = Ĉk ∩ Lk .
Now, we are ready to present two-level domain decomposition algorithm for prob-

lem (.).

Algorithm . (Two-level domain decomposition algorithm)
. Initialization. k := :

(a) Choose an initial u, w such that u ∈ S and w ∈U . Define the coincidence set I

according to (.).
(b) Solve w such that

⎧⎨
⎩
w
i = , i ∈ I or wi = ,Fi(w) ≥ ,

Fi(w) = , otherwise,
(.)

and define L, C and Ĉ according to (.), (.) and (.), respectively.
. Iteration step:

(a) Inner approximation (additive Schwarz algorithm with two subdomains). Solve
the following two subproblems in parallel:
(i) The subproblem defined by the following obstacle problem

uk, = TĈk
(
uk

)
.
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(ii) The subproblem defined by the following linear equation

uk, =GLk
(
uk

)
. (.)

Let uk+ =min(uk,,uk,) and define the coincidence set Ik+ according to (.).
(b) Outer approximation. Solve the linear system

⎧⎨
⎩
wk+
i = , i ∈ Ik+ or wk

i = ,Fi(wk) ≥ ,

Fi(wk+) = , otherwise.
(.)

If F(wk+) ≥ , then stop; wk+ is the solution. Otherwise, define Lk+ and Ĉk+ according
to (.) and (.), respectively, and let k := k +  and return to step .

Remark . The subproblems in PSOR method and classical Schwarz algorithm are ob-
stacle problems, while the subproblems (.) and (.) can be solved by the use of fast
linear solvers.

Remark . The difference between Algorithm . and Algorithm . in [] lies on the
way of generating the outer approximation sequence. Algorithm . in [] seems difficult
to extend to other problems, such as bilateral obstacle problem, while the idea of Algo-
rithm . may be easier to be applied to other problems.

3 The convergence of Algorithm 2.2
In this section, we analyze the convergence of Algorithm .. First, we introduce some
lemmas.

Lemma . Let u ∈ S, w ∈ U and w be defined by (.). Then, we have  ≤ w ≤ w and
w ∈U .

Proof Let Î = Î ∪ Î, where Î = {i|i ∈ I}, Î = {i|wi =  and Fi(w) ≥ } and Ĵ = N \ Î . By
the definition of w, we have w

Î
= wÎ = . By Theorems . and ., we have u ≥ w ≥ .

Hence if i ∈ Î, we have wi = . Then w
Î
= wÎ = . Since w ∈U , we have FĴ (w) ≤ FĴ (w) = .

Hence, noting that F(u) = Au + b, and A is an M-matrix, we have  ≤ w ≤ w. This com-
pletes the proof. �

Lemma . Let u ∈ S, let subsets L and Ĉ be defined by (.) and (.), respectively,
then

u, = TĈk
(
u

) ∈ S, u, ≤ u, (.)

u, =GL
(
u

) ∈ S, u, ≤ u, (.)

u =min
(
u,,u,

) ∈ S, (.)

u≤ u ≤ u. (.)

Proof Equation (.) can be directly obtained by Theorem .. By (.), we have

FL
(
u,

)
= , u,N\L = uN\L . (.)
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Since u ∈ S, we have

FL
(
u

) ≥ .

Noticing that F(u) = Au + b, and A is anM-matrix, (.) concludes

u, ≤ u. (.)

We have by (.), (.) that

FN\L
(
u,

) ≥ FN\L
(
u

) ≥ . (.)

Let L = L ∪ L, where L = {i ∈ L|w
i = ,Fi(w) < }, and L = {i ∈ L|w

i > }. Since
w ∈ U , w ≤ u, we have ui >  for i ∈ L, and then FL (u) = . For i ∈ L , we have i ∈ I,
and then ui = . It follows then from (.) and u ∈ S that

u,
N\L

≥ uN\L , FL
(
u,

)
= FL (u) = , (.)

which means u, ≥ u≥ . This, together with (.) and (.), implies that u, ∈ S. There-
fore, (.) holds. Similar to the proof in Theorem ., we have (.) and (.). The proof
is then completed. �

By Lemmas . and ., and the principle of induction, we have wk+ ≥ wk ≥ , uk ≥
uk+ ≥ , k = , , . . . .

Lemma . Ok+ ⊆Ok and Ik ⊆ Ik+ ⊆N, k = , , . . . . If F(wk+) ≥ , wk+ is the solution.

Proof If j ∈ Ok+, by the definition of Ok+, we have wk+
j = , Fj(wk+) ≥ . Noting that

wk+ ≥ wk ≥ , we have wk
j = . If Fj(wk) < , notice that A is an M-matrix, we have

Fj(wk+) ≤ Fj(wk) < , which is a contradiction. Hence, j ∈ Ok and Ok+ ⊆ Ok . Ik ⊆ Ik+ ⊆
N, k = , , . . . is obvious. Noting (.), it is obvious that if for some k such that F(wk) ≥ ,
wk is the solution. �

Theorem . The sequence generated by two-level domain decomposition method (Algo-
rithm .) converges to the solution u of problem (.) after a finite number of iterations.

Proof If for some k, F(wk) ≥ , by Lemma ., wk is the solution and wk = u since the
problem (.) has only one solution. Otherwise, since uk+ =min(uk,,uk,), we have Ik, ⊆
Ik+ and hence Ik+ \ Ik = ∅. Noting that Ik ⊆ Ik+ and that N is an index set with finite
elements, Ik+ \ Ik = ∅ can only occur in finite steps. By Lemma ., we have Ok+ ⊆ Ok ,
andOk \Ok+ = ∅ also can only occur in finite steps. In this case, after some finite steps, we
have Ik+ = Ik ,Ok+ =Ok . By the definition of wk+, we have Fi(wk+)≥ , ∀i ∈ N . Hence, by
Lemma ., wk+ is the solution. This completes the proof. �
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4 Numerical experiment
In this section, we present numerical experiments in order to investigate the efficiency of
Algorithm .. The programs are coded in Visual C++ . and run on a computer with
. GHz CPU. In the tests, we consider the following LCP:

u≥ , A(u) – b ≥ , uT
(
A(u) – b

)
= , (.)

where

A =

h

⎛
⎜⎜⎜⎜⎜⎝

H –I

–I H
. . .

. . . . . . –I
–I H

⎞
⎟⎟⎟⎟⎟⎠

and

H =

⎛
⎜⎜⎜⎜⎜⎝

 –

– 
. . .

. . . . . . –
– 

⎞
⎟⎟⎟⎟⎟⎠
,

h = √
n+ , b = (b,b, . . . ,bn)T is a given vector. In our test, we set bi = –., i = , , . . . ,n/

and bi = ., i = n/ + ,n/ + , . . . ,n.
The matrix Amay be obtained by discretizing the operator –�u by using five-point dif-

ference scheme with a constant mesh step size h = /(m+), wherem denotes the number
of mesh nodes in x- or y-direction (n =m is the total number of unknowns).
We compare different algorithms from the point of view of iteration numbers and CPU

times. Here, we consider three algorithms: classical additive Schwarz algorithm (i.e., Al-
gorithm ., denoted by AS), Newton’s method proposed in [] (denoted by SSN), and
Algorithm . (denoted by TLDD). In the AS, we decompose N into two equal parts with
the overlapping size O( 

 ). In the algorithms we considered, all subproblems relating to
obstacle problems are solved by PSOR with the same relaxation parameter ω = ., and
the initial point is u = A–e with e = (, , . . . , )T . The tolerance in the subproblems of the
algorithms is chosen to be equal to – in ‖ · ‖-norm, while in the outer iterative pro-
cesses, it is chosen to be equal to – in ‖ ·‖-norm. In the TLDD, we choose initialw = .
The tolerance in the subproblems of the algorithms is chosen to be equal to – in ‖ · ‖-
norm, while in the outer iterative processes, it is chosen to be equal to – in ‖ · ‖-norm.
In the SSN, we choose ε = –, p = , ρ = ., β = ., which is defined by the procedure
proposed in ([], Section ). We choose the initial point u = .
We investigate the performances of each algorithm with different dimensions. Table 

gives the iteration numbers and CPU times for the above-mentioned algorithms. From
the table, we can easily see that the iteration numbers of TLDD are fewest among the
algorithms we considered. The subproblems in AS are solved by PSOR, and it takes very
little time to find an approximate solution to the obstacle subproblems. Nevertheless, in
order to find the exact solution of subproblems, SSN and TLDD spent muchmore time to
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Table 1 Comparisons of iteration numbers and cpu times

n AS SSN TLDD
iter. cpu iter. cpu iter. cpu

100 51 0.015 5 0.015 3 0.047
400 155 0.64 10 1.997 6 1.154
900 318 6.567 12 27.378 9 17.755

1,600 546 34.564 14 178.101 11 112.117

solve the related linear equations at each iteration step. This may explain why these two
algorithms did not perform as well as we expected.

Concluding remark In this paper, we propose a new kind of domain decomposition
method for linear complementarity problem and establish its convergence. From the nu-
merical result, we can see that this method needs less iteration number to converge to
the solution rapidly than the additive Schwarz method and SSN. There are still some in-
teresting future works that need to be done. For example, as we can see from TLDD, the
main work is calculating the linear equations; we can discuss the affect of inexact solution
for related linear subproblems. It is also interesting for us to extend the new method to
some other problems, such as nonlinear complementarity problem and bilateral obstacle
problem. We leave it as a possible future research topic.
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