779 research outputs found

    Godel Universe from String Theory

    Full text link
    G\"odel universe is a direct product of a line and a three-dimensional spacetime we call Gα_\alpha. In this paper, we show that the G\"odel metrics can arise as exact solutions in Einstein-Maxwell-Axion, Einstein-Proca-Axion, or Freedman-Schwarz gauged supergravity theories. The last allows us to embed G\"odel universe in string theory. The ten-dimensional spacetime is a direct product of a line and the nine-dimensional one of an S3×S3S^3\times S^3 bundle over Gα_\alpha, and it can be interpreted as some decoupling limit of the rotating D1/D5/D5 intersection. For some appropriate parameter choice, the nine-dimensional metric becomes an AdS3×S3_3\times S^3 bundle over squashed 3-sphere. We also study the properties of the G\"odel black holes that are constructed from the double Wick rotations of the G\"odel metrics.Comment: latex, 20 pages, discussion on null-energy condition included, typos corrected and references adde

    Godel Metrics with Chronology Protection in Horndeski Gravities

    Full text link
    G\"odel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the G\"odel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.Comment: Latex, 11 pages, references adde

    P−v{\cal P}-v Criticality in Gauged Supergravities

    Full text link
    AdS black holes show richer transition behaviors in extended phase space by assuming the cosmological constant and its conjugate quantity to behave like thermodynamic pressure and thermodynamic volume. We study the extended thermodynamics of charged dilatonic AdS black holes in a class of Einstein-Maxwell-dilaton theories that can be embedded in gauged supergravities in various dimensions. We find that the transition behaviors of higher dimensional dilatonic AdS black holes are different from the four dimensional counterparts, and new transition behaviors emerges in higher dimensions. First, there exists standard Van der Waals transition only in a five dimensional dilatonic AdS black hole with two equal charges. Second, there emerge a new phase transition branch in negative pressure region in six and seven dimensional dilatonic black holes with two equal charges. Third, there emerge transition behaviors in higher dimensional black hole with single charge cases, which are absent in four dimensions.Comment: Latex, 18 pages, 8 figures; published versio

    Exact Embeddings of JT Gravity in Strings and M-theory

    Full text link
    We show that two-dimensional JT gravity, the holographic dual of the IR fixed point of the SYK model, can be obtained from the consistent Kaluza-Klein reduction of a class of EMD theories in general DD dimensions. For D=4D=4, 55, the EMD theories can be themselves embedded in supergravities. These exact embeddings provide the holographic duals in the framework of strings and M-theory. We find that a class of JT gravity solutions can be lifted to become time-dependent charged extremal black holes. They can be further lifted, for example, to describe the D1/D5-branes where the worldsheet is the Milne universe, rather than the typical Minkowski spacetime.Comment: Latex, 25 pages, typos corrected, further discussions added, appeared in Eur.Phys.J.

    Uniqueness and structure of solutions to the Dirichlet problem for an elliptic system

    Get PDF
    AbstractIn this paper, we consider the Dirichlet problem for an elliptic system on a ball in R2. By investigating the properties for the corresponding linearized equations of solutions, and adopting the Pohozaev identity and Implicit Function Theorem, we show the uniqueness and the structure of solutions
    • …
    corecore