250 research outputs found

    Cardiovascular Disease in Hemodialysis Patients

    Get PDF

    Common gene signatures and molecular mechanisms of diabetic nephropathy and metabolic syndrome

    Get PDF
    BackgroundDiabetic nephropathy (DN) is the leading cause of end-stage renal disease. Multiple metabolic toxicities, redox stress, and endothelial dysfunction contribute to the development of diabetic glomerulosclerosis and DN. Metabolic syndrome (MetS) is a pathological state in which the body’s ability to process carbohydrates, fats, and proteins is compromised because of metabolic disorders, resulting in redox stress and renal remodeling. However, a causal relationship between MetS and DN has not been proven. This study aimed to provide valuable information for the clinical diagnosis and treatment of MetS with DN.MethodsHere, transcriptome data of DN and MetS patients were obtained from the Gene Expression Omnibus database, and seven potential biomarkers were screened using bioinformatics analysis. In addition, the relationship between these marker genes and metabolism and immune infiltration was explored. Among the identified marker genes, the relationship between PLEKHA1 and the cellular process, oxidative phosphorylation (OXPHOS), in DN was further investigated through single-cell analysis.ResultsWe found that PLEKHA1 may represent an important biomarker that perhaps initiates DN by activating B cells, proximal tubular cells, distal tubular cells, macrophages, and endothelial cells, thereby inducing OXPHOS in renal monocytes.ConclusionOverall, our findings can aid in further investigation of the effects of drug treatment on single cells of patients with diabetes to validate PLEKHA1 as a therapeutic target and to inform the development of targeted therapies

    Research on Nonpoint Source Pollution Assessment Method in Data Sparse Regions: A Case Study of Xichong River Basin, China

    Get PDF
    The NPS pollution is difficult to manage and control due to its complicated generation and formation mechanism, especially in the data sparse area. Thus the ECM and BTOPMC were, respectively, adopted to develop an easy and practical assessment method, and a comparison between the outputs of them is then conducted in this paper. The literature survey and field data were acquired to confirm the export coefficients of the ECM, and the loads of TN and TP were statistically analyzed in the study area. Based on hydrological similarity, runoff data from nearby gauged sites were pooled to compensate for the lack of at-site data and the water quality submodel of BTOPMC was then applied to simulate the monthly pollutant fluxes in the two sections from 2010 to 2012. The results showed agricultural fertilizer, rural sewage, and livestock and poultry sewage were the main pollution sources, and under the consideration of self-purification capacity of river, the outputs of the two models were almost identical. The proposed method with a main thought of combining and comparing an empirical model and a mechanistic model can assess the water quality conditions in the study area scientifically, which indicated it has a good potential for popularization in other regions

    Z-Scheme Photocatalyst Constructed by Natural Attapulgite and Upconversion Rare Earth Materials for Desulfurization

    Get PDF
    The Er3+:CeO2/ATP (attapulgite) nanocomposites were prepared by a facile precipitation method. The samples were characterized by various measurements. XRD and TEM showed that Er3+:CeO2 nanoparticles were well-crystallized and loaded on the surface of ATP. The visible light was converted into ultraviolet light by Er3+:CeO2 as evidenced by upconversion photoluminance (PL) analysis. The mass ratio of Er3+:CeO2 to ATP on the desulfurization efficiency was investigated. Results showed that the desulfurization rate reached 87% under 4 h visible light irradiation when the mass ratio was 4:10. The mechanism was put forward as follows. Er3+:CeO2 and ATP formed Z-scheme heterostructure intermediated by oxygen vacancy, leading to the enhanced separation of photogenerated charges and preservation of high oxidation-reduction potential, both of which favored for the generation of radicals to oxidize sulfur species

    HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining

    Full text link
    Human-centric perceptions include a variety of vision tasks, which have widespread industrial applications, including surveillance, autonomous driving, and the metaverse. It is desirable to have a general pretrain model for versatile human-centric downstream tasks. This paper forges ahead along this path from the aspects of both benchmark and pretraining methods. Specifically, we propose a \textbf{HumanBench} based on existing datasets to comprehensively evaluate on the common ground the generalization abilities of different pretraining methods on 19 datasets from 6 diverse downstream tasks, including person ReID, pose estimation, human parsing, pedestrian attribute recognition, pedestrian detection, and crowd counting. To learn both coarse-grained and fine-grained knowledge in human bodies, we further propose a \textbf{P}rojector \textbf{A}ssis\textbf{T}ed \textbf{H}ierarchical pretraining method (\textbf{PATH}) to learn diverse knowledge at different granularity levels. Comprehensive evaluations on HumanBench show that our PATH achieves new state-of-the-art results on 17 downstream datasets and on-par results on the other 2 datasets. The code will be publicly at \href{https://github.com/OpenGVLab/HumanBench}{https://github.com/OpenGVLab/HumanBench}.Comment: Accepted to CVPR202
    • …
    corecore