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Background: Diabetic nephropathy (DN) is the leading cause of end-stage renal 
disease. Multiple metabolic toxicities, redox stress, and endothelial dysfunction 
contribute to the development of diabetic glomerulosclerosis and DN. Metabolic 
syndrome (MetS) is a pathological state in which the body’s ability to process 
carbohydrates, fats, and proteins is compromised because of metabolic disorders, 
resulting in redox stress and renal remodeling. However, a causal relationship 
between MetS and DN has not been proven. This study aimed to provide valuable 
information for the clinical diagnosis and treatment of MetS with DN.

Methods: Here, transcriptome data of DN and MetS patients were obtained from 
the Gene Expression Omnibus database, and seven potential biomarkers were 
screened using bioinformatics analysis. In addition, the relationship between these 
marker genes and metabolism and immune infiltration was explored. Among 
the identified marker genes, the relationship between PLEKHA1 and the cellular 
process, oxidative phosphorylation (OXPHOS), in DN was further investigated 
through single-cell analysis.

Results: We found that PLEKHA1 may represent an important biomarker that 
perhaps initiates DN by activating B cells, proximal tubular cells, distal tubular 
cells, macrophages, and endothelial cells, thereby inducing OXPHOS in renal 
monocytes.

Conclusion: Overall, our findings can aid in further investigation of the effects of 
drug treatment on single cells of patients with diabetes to validate PLEKHA1 as a 
therapeutic target and to inform the development of targeted therapies.
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1. Introduction

Metabolic syndrome (MetS) is a group of medical conditions, including abdominal obesity, 
high blood pressure, high blood sugar, high triglyceride levels, and low high-density lipoprotein 
cholesterol levels, that increases the risk of developing cardiovascular disease and type 2 diabetes 
(1). MetS, independent of other covariates, is a predictor of declining renal function and 
worsening of albuminuria in patients with type 2 diabetes (2). Nephropathy remains a major 
cause of morbidity and a key determinant of mortality in patients with type 1 or type 2 diabetes 
mellitus (3, 4). Mitochondrial fatty acid β-oxidation is the preferred process for generating 
adenosine triphosphate (ATP) in the kidney, and its dysfunction results in ATP depletion and 
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lipotoxicity, leading to tubular injury, inflammation, and subsequent 
progression of fibrosis (5).

The relationship between MetS and diabetic nephropathy (DN) is 
complex and bidirectional; while DN is considered a common 
progressive disease, MetS can be inhibited and it contributes to DN 
development and progression. The possible mechanisms of renal 
injury include insulin resistance, oxidative stress, increased production 
of pro-inflammatory cytokines, increased production of connective 
tissue growth and fibrotic factors, increased microvascular injury, and 
renal ischemia. MetS promotes kidney injury. However, despite the 
strong association between MetS and DN, a causal relationship has not 
yet been proven. Therefore, there is an urgent need to discover a range 
of novel biological markers for DN and MetS.

This study aimed to provide valuable information for the clinical 
diagnosis and treatment of MetS with DN. To this end, we analyzed 
transcriptomic RNA data from patients with DN and MetS and single-
cell RNA sequencing (scRNA-seq) data from patients with DN to 
study their gene expression profiles and subsequently explore common 
biological markers of DN and MetS.

2. Materials and methods

2.1. Data sources

The keywords “diabetic nephropathy” and “metabolic syndrome” 
were used to search for DN and MetS gene expression profiles, 
respectfully, in the Gene Expression Omnibus (GEO) database (Home 
– GEO – NCBI [nih.gov]). Furthermore, the keywords “diabetic 
nephropathy” and “scRNA” were used to search for the single-cell 
dataset of DN. Finally, the GEO datasets GSE30529, GSE99340, and 
GSE98895 were selected. Four GEO datasets were selected —
GSE30529, GSE98895, GSE99340, and GSE131882 (6–9). Information 
regarding the four datasets, including GSE numbers, detection 
platforms, samples, and types of RNA sources, is summarized in 
Supplementary material 1. GSE30529 and GSE98895 were also paired 
as a discovery cohort for weighted gene co-expression network 
analysis (WGCNA) and GSE99340 and GSE131882 as validated 
datasets for differential gene expression analysis. The gene expression 
profiles were then transformed, and the probes were matched to their 
gene symbols according to the annotation documents of the 
corresponding platforms. Finally, gene matrices with row names 
designating sample names and column names designating gene 
symbols were obtained for subsequent analysis.

The DN scRNA-seq dataset GSE131882 was downloaded from 
the GEO database, which included data for three control groups and 
three patients with DN (10). The original dataset contains data for 
31,286 cells. The percentages of mitochondria and rRNA were then 
calculated using the PercentageFeatureSet function, with the genes 
expressed being >200 and <2,500, respectively. The selection criteria 
are shown in Supplementary Figure S1, while the workflow is shown 
in Supplementary Figure S2.

2.2. Identification of differentially 
expressed genes

Data normalization and probe annotation were performed on 
datasets GSE30529 and GSE98895 using the limma and GEOquery 

packages of R software version 4.1.3, with adjusted p < 0.05 and |log 
FC| > 1 as the DGE screening criteria (11). Subsequently, common 
DEGs for DN and MetS were obtained, and network enrichment 
analysis was performed using Metascape.1

2.3. Co-expression modules in DN and 
MetS

WGCNA is an algorithm that identifies co-expressed gene 
modules with high biological significance and explores the relationship 
between gene networks and diseases. WGCNA was used here to 
obtain DN- and MetS-associated modules. A total of 111,107 genes in 
the GEO dataset were obtained from the sequencing data and were 
used for WGCNA. The WGCNA package in R version 4.1.3 was used 
to perform the analysis. The appropriate soft-threshold powers (β, 
ranging from 1 to 20) were then selected using the “pickSoftThreshold” 
function in the WGCNA package based on the standard scale-free 
network. The soft-threshold power value β and gene correlation 
matrix among all gene pairs calculated by Pearson analysis were used 
to build an adjacency matrix. The topological overlap matrix and the 
corresponding dissimilarity were then transformed from the 
adjacency matrix. Subsequently, a hierarchical clustering dendrogram 
was built, with similar gene expression profiles divided into different 
modules. Finally, the expression profiles of each module were 
summarized by the module eigengene, and the correlation between 
the module eigengene and clinical features was calculated (12). Finally, 
modules with high correlation coefficients were targeted in terms of 
clinical features, and the genes in these modules were selected for 
subsequent analysis.

2.4. Identification of shared and unique 
gene signatures in DN and MetS

Least absolute shrinkage and selection operator (LASSO) was 
applied to identify DEGs with independent pre-diagnostic values. 
Based on the highest lambda value selected by 1,000 cross-validations 
in LASSO, a set of diagnostic genes and their LASSO coefficients were 
defined (13).

2.5. Construction of the XGBoost model

XGBoost was used to select a few key genomic features to build 
prediction models. XGBoost comprises an ensemble of K regression 
trees [T1(X, Y)…Tk(X, Y)], where X is the feature vector and Y is the 
corresponding risk. Assuming that the dataset contains n examples 
and p features D = {(xi, yi)} (|D| = n, xi ∈ X, yi ∈ Y), the ensemble 
XGBoost model uses K trees to predict patient risk:
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where f represents the space of the regression tree, q is the 
structure of the tree, T is the number of leaves in each tree, and fk  
represents the regression tree’s structure q with weight w. This method 
was implemented using the XGBoost package in R. All other 
parameters in our study used the default values in the R package 
XGBoost (14). The genes selected by XGBoost were considered 
candidate genes related to DN and MetS.

2.6. Analysis of immune cell infiltration and 
metabolic pathway

The CIBERSORT (https://cibersortx.stanford.edu/) deconvolution 
algorithm was used to evaluate differential immune cell infiltration. 
CIBERSORT is an analysis tool that uses gene expression data to 
estimate the abundance of member cell types in a mixed cell population 
(15). The LM22 gene file provided by CIBERSORT was used to define 
and infer the relative proportions of 22 types of immune-infiltrating 
cells in both disease and normal gene expression data (16). The default 
signature matrix of 100 permutations was used in the algorithm for this 
study (17). To ensure confidence in the results, CIRBERSORT uses 
Monte Carlo sampling to derive the deconvolution p-value for each 
sample, and, in this study, only data with p-values <0.05 were retained. 
The results were then visualized using the ggplot2 package in R, before 
performing a correlation analysis between the 22 immune cells and key 
genes using Spearman’s rank correlation test. Both MetS and DN are 
related to metabolism, and the set of metabolic signatures in the 
Molecular Signatures Database was used as a reference for gene set 
enrichment analysis, where p < 0.05 and a false discovery rate q < 0.05 
were considered to indicate significant enrichment (18).

2.7. scRNA-seq data clustering dimension 
reduction

The merged data were first normalized using log normalization. 
Simultaneously, all genes were scaled using the ScaleData function, 
while the RunPCA function was used to reduce the principal 
component analysis (PCA) dimension for the first 2000 highly variable 
genes screened above. Dim = 20 was chosen before clustering the cells 
through the “FindNeighbors” and “FindClusters” functions 
(resolution = 0.8; Supplementary Figure S3) to find the cell clusters (19, 
20). The top 50 principal components were then selected to further 
reduce dimensionality using the Uniform Manifold Approximation and 
Projection (UMAP) method. UMAP is a method of data dimensionality 
reduction, which assumes that the available data samples are uniformly 
distributed in the topological space and that these limited data samples 
can be approximated and mapped to a low-dimensional space. The 
“FindAllMarkers” function was subsequently used to screen the marker 
genes of 22 subgroups with |logFC| = 0.5 and min.pct = 0.35 (21). Finally, 
a corrected p < 0.05 was used to screen the marker genes.

2.8. Cell-type identification by estimating 
relative subsets of oxidative 
phosphorylation

OXPHOS is an electron transfer chain driven by substrate 
oxidation coupled to ATP synthesis through an electrochemical 

transmembrane gradient. Hallmark_oxidative_phosphorylation is a 
pathway based on the input matrix of gene expression file that is used 
to accurately estimate metabolism in tissues. This approach was used 
to compare metabolic differences between different cells in different 
groups. Spearman correlation analysis was performed to explore the 
relationship between metabolism and various cells in the kidneys of 
DN patients. The ggplot2 software package was then used to visualize 
the differences and results of related analyses (14, 22–26).

2.9. Statistical analysis

R version 4.1.3 was used for statistical analysis, while Student’s 
t-test was performed to assess significant differences among distinct 
groups. In addition, the glmnet R package was used for the LASSO 
and Cox regression analyses. p-values <0.05 indicated statistical 
significance (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

2.10. Ethics approval and informed consent

GEO is a public database, and ethical approval was obtained for 
the studies that collected the various data in the database. Users can 
freely download relevant data for use in research and publication of 
relevant articles. Our study was based on open-source data; therefore, 
there are no ethical issues or other conflicts of interest.

3. Results

3.1. Co-expression modules in DN and 
MetS

Three datasets (GSE30529, GSE98895, and GSE99340) were 
integrated here, before removing batch effects. A soft threshold of β = 4 
was chosen for consistency with the scale-free network. A total of 18 
modules were identified in GSE30529 and GSE98895 using WGCNA, 
with each color representing a different module. A module-trait heatmap 
was also constructed according to the Spearman correlation coefficient to 
evaluate the association between each module and disease (Figures 1A,B). 
In the heatmap, the pink module showed the strongest association with 
DN (cor = 0.3, p = 5.6e-07; Figure 1C) and MetS (cor = 0.48, p = 7.5e−17; 
Figure  1D), which included 268 genes (Supplementary material 2). 
Enriched clusters up to 100 showed that the functionally enriched 
WGCNA pink and turquoise modules were primarily involved in the 
following processes: metabolic, immune system, and cellular processes, 
as well as the regulation of biological processes and response to stimuli. 
The molecular pathway was related to cellular macromolecule catabolic 
process, RNA metabolism, signaling by Rho and mitochondrial Rho 
GTPases and RHOBTB3, and protein phosphorylation (Figures 1E,F). 
Figure  1G further validates the correlation of comorbid WGCNA 
modules with metabolism and immunity.

3.2. Common gene signatures in DN and 
MetS

Up-and-down regulated DEGs were obtained for DN and MetS 
by setting the cut-off values at an adjusted p-value of 0.05 and 
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FIGURE 1

Co-expression modules in DN and MS. (A) Clustered dendrogram of genes. Each branch in the figure represents a gene, while each color below 
represents a co-expression module. (B) Heatmap of module-feature relationships. The pink module was significantly associated with DN. 
(C) Distribution of mean gene significance in modules associated with DN (p = 5.6e−07). (D) Distribution of mean gene significance in modules 
associated with MetS (p = 7.5e−17). (E) The top-level Gene Ontology biological processes. (F) Up to 100 enriched clusters. (G) Network of enriched 
terms: colored by cluster ID, where nodes that share the same cluster ID are typically close to each other.
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|log2FC| > 1 (27). Ultimately, 86 upregulated and 22 downregulated 
genes associated with DN and MetS were discovered using the 
intersection of the differential genes of the two disorders (Figures 2A,B; 
Supplementary materials 3, 4). These genes were subjected to 
functional enrichment and module analyses using Metascape. Based 
on enrichment clusters up to 100, the common gene functions of DN 
and MetS were primarily enriched as follows: immune system 
function, cellular function, and regulation of biological processes 
(Figures 2C–E). The common DN and MetS related to metabolism 
and immunity were further investigated using MCODE, with three 
core modules subsequently obtained: module 1 included 8 genes: SYK, 

VAV1, BRD7, TUBB, MYC, TUBA1B, PCNA, and TBCB; module 2 
included 5 genes: DYNC1H1, DLST, TUBA1A, MCM7, and ARPC1B; 
and module 3 included 4 genes: EVL BAIAP2, SRPK2, and PFN 
(Figure 2F).

3.3. Screening for common biological 
markers of DN and MetS

To further identify potential biomarkers for DN and MetS from 
the 108 target genes, Cox regression analysis of the LASSO data 

A B

C D

E

F

FIGURE 2

Common gene signatures in DN and MS. (A) Sixty-five upregulated genes related to DN and MS. (B) Thirty-four downregulated genes related to DN 
and MS. (C) The top-level Gene Ontology biological processes. (D) Up to 100 enriched clusters. (E) Network of enriched terms: Colored by cluster ID, 
where nodes that share the same cluster ID are typically close to each other. (F) Protein–protein interaction network and MCODE components 
identified in gene lists.
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FIGURE 3

Expression levels of common biological markers in DN and MS. (A–G) CD52; CSGALNACT1; CX3CR1; SYK; TUBA1B; PAK2; PLEKHA1.

was used to reduce the number of candidate genes. The change in 
trajectory of each gene is shown in Supplementary Figure S4. Nine 
potential biological markers were obtained by LASSO regression, 
while seven potential biomarkers were obtained using the DN 
external validation dataset GSE99340. We  also found that in 
GSE30529, seven genes were highly upregulated in DN samples 
(Figures 3A–G). As shown in Supplementary Figure S5, receiver 
operating characteristic (ROC) curves of the seven potential 
biological markers were well adapted in both the training and 
validation datasets (28). The Coef index for the seven identified 
genes is presented in Supplementary material 5. Ultimately, the 
seven genes were considered potential biomarkers for DN 
and MetS.

3.4. Building risk prediction models using 
XGBoost

The XGBoost method was used to construct a lightweight model 
of the seven potential biological markers. Both the areas under the 
ROC curve for the DN training set GSE30529 and the precision-recall 
(PR) curve were 1 (Figures 4A,B). Furthermore, the area under the 
ROC curve in the validation set GSE99340 was 0.778, while that under 
the PR curve was 0.955 (Figures 4C,D). Simultaneously, XGBoost 
curve fitting was performed on the GSE988985 MetS dataset, yielding 
solid curve-fitting results (ROC = 0.995, PR = 0.995; Figures 4E,F). 
These results suggest that the seven potential biological markers 
exhibited favorable diagnostic efficacy for both MetS and DN.
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3.5. Immune cell infiltration and metabolic 
pathway analysis

There was a difference in the composition of immune cells. Tumor 
microenvironment (TME) analysis results indicated the presence of 
immune infiltration in DN GSE30529, primarily memory B cells 
(MBCs), CD8+ T cells, γδ T cells, resting memory CD4+ T cells, and 
M0 macrophages (Supplementary Figure S6A). TME was grouped 
according to DN and control groups, with the results showing immune 

infiltration in DN GSE30529, mainly natural killer (NK) cells, 
monocytes, M1 macrophages, dendritic cells, and neutrophils 
(Supplementary Figure S6B). The immune-infiltrating cells in DN 
GSE30529 were predominantly macrophages, T cells, and MBCs 
(Supplementary Figures S6C,D). There was also a correlation between 
immune-infiltrating cells, with the results showing that γδ T cells and 
M1 macrophages were both highly correlated (cor = 0.85; 
Supplementary Figure S6E). The seven genes screened above were 
analyzed for their correlation with immune cells in the GSE30529 DN 

A B

C D

E F

FIGURE 4

Building risk prediction models by XGBoost. (A–B) Performance of the ROC and PR curves in GSE30529 (training set). (C–D) Performance of the ROC 
and PR curves in GSE99340 (validation set). (E–F) Performance of ROC and PR curves in GSE98895 (MS cohort).
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dataset, with the results showing that SYK highly correlated with γδ T 
cells and NK cells. PHEKHA1 was also highly correlated with 
macrophages and resting memory CD4+ T cells 
(Supplementary Figure S6F). Furthermore, nine metabolic pathways 
were analyzed in the GSE30529 DN dataset. The upregulation of SYK, 
CD52, CX3CR1, TUBA1B, and CSGALNACT1 led to the most 
noticeable metabolic abnormalities, which were reflected primarily in 
heme metabolism, bile acid metabolism, adipogenesis, OXPHOS, 
xenobiotic metabolism, and fatty acid metabolism 
(Supplementary Figure S7G). TME analysis also indicated the 
presence of immune infiltration in the GSE98895 MetS dataset, mainly 
monocytes, naïve CD4+ T cells, and CD8+ T cells 
(Supplementary Figure S7A). TME was grouped according to MetS 
and control groups, and the results showed immune infiltration in the 
GSE98895 MetS dataset, primarily monocytes, CD8+ T cells, and naïve 
CD4+ T cells (Supplementary Figure S7B). Monocytes and T cells 
constituted the major proportion of immune-infiltrating cells in the 
GSE98895 MetS dataset (Supplementary Figures S7C,D). GSE98895 
immune-infiltrating cells were correlated, and the results showed that 
M2 macrophages and dendritic cells were highly correlated (cor = 0.84; 
Supplementary Figure S7E). In the GSE98895 MetS dataset, CX3CR1 
was associated with immune infiltration, with elevated CX3CR1 levels 
leading to NK cell and monocyte activation. Furthermore, elevated 
expression levels of PAK2 activated monocytes 
(Supplementary Figure S7F). PLEKHA1, TUBA1B, CX3CR1, PAK2, 
and CD52 were the most highly correlated genes in the GSE98895 
MetS dataset. TUBA1B expression was also elevated, resulting in 
OXPHOS, glycolysis, adipogenesis, xenobiotic metabolism, and fatty 
acid metabolism (Supplementary Figure S7G). Furthermore, CX3CR1 
expression was elevated, leading to increased OXPHOS, glycolysis, 
bile acid metabolism, xenobiotic metabolism, and fatty acid 
metabolism (Supplementary Figure S4G). PAK2 expression was also 
elevated, leading to increased OXPHOS, xenobiotic metabolism, and 
fatty acid metabolism; moreover, CD52 expression was elevated, 
leading to increased OXPHOS (Supplementary Figure S7G). Finally, 
TUBA1B expression was elevated, which led to increased OXPHOS, 
glycolysis, adipogenesis, xenobiotic metabolism, and fatty acid 
metabolism (Supplementary Figure S7G).

3.6. Definition of clusters and 
dimensionality reduction for visual 
representation of cells

The “ScaleData” function was implemented to scale all genes 
extracted from the scRNA-seq dataset GSE131882 and PCA 
dimensionality reduction was performed to identify anchor points. A 
total of 21 clusters were identified (Figure  5A; 
Supplementary material 6). These identified clusters were then labeled 
as various cell types using the top five differential marker genes. Cell 
marker genes were downloaded from PanglaoDB2 and the Human 
Protein Atlas.3 Ultimately, 11 cell types were defined (Figure 5B), and 
after grouping into DN and blank controls, a single-cell analysis was 

2 https://panglaodb.se/index.html

3 https://www.proteinatlas.org/

performed (Figure  5C). The five differential genes with the most 
prominent contributions were screened, as shown in Figure 5D.

3.7. Common biological markers for 
single-cell analysis

The relationship between potential DN genes and single cells of 
DN after screening by proportional values subsequently showed that 
CSGALNACT1, PAK2, PLEKHA1, and SYK were all related to 
DN. Figure 6A shows the proportional relationship between the seven 
potential biological markers and single kidney cells. SYK, PLEKHA1, 
PKA2, and CSGALNACT1 were found to have the highest associations 
with DN OXPHOS. Figure  6B shows the expression relationship 
between the seven potential biomarkers and individual kidney cells, 
demonstrating that the above four genes were the most relevant for 
OXPHOS in DN.

3.8. Association between PLEKHA1 and 
single-cell OXPHOS in DN

The relationship between upregulated PLEKHA1 and the single-
cell OXPHOS score for DN was presented in a violin plot; the results 
in Figures 7A–E show that upregulated PLEKHA1 induced OXPHOS 
in B cells, proximal tubular cells, distal tubular cells, macrophages, and 
endothelial cells. Figure  7F also shows that the upregulation of 
PLEKHA1 led to elevated levels of OXPHOS in DN. Furthermore, 
Supplementary material 7 presents single-cell OXPHOS fractions for 
various types of DN.

4. Discussion

Diabetes mellitus is the most common cause of chronic kidney 
disease worldwide and can lead to multiple complications, including 
end-stage renal disease, cardiovascular disease, infection, and 
ultimately death (29, 30). MetS is a common metabolic disorder 
arising from the increasing prevalence of obesity (1). In this study, 
differential genes associated with DN and MetS were found to 
be primarily enriched in immune system function, cellular function, 
and biological process regulation. One of the potential biological 
markers identified in this study, PLEKHA1, induces OXPHOS in B 
cells, proximal tubular cells, distal tubule cells, macrophages, and 
endothelial cells.

The induction of oxidative stress, inflammation, fibrosis, and 
apoptosis by the accumulation of metabolites is known as lipotoxicity 
(31). Recent evidence has indicated that both the quantity and quality 
of lipids are involved in renal damage associated with lipotoxicity by 
activating inflammation, oxidative stress, mitochondrial dysfunction, 
and cell death. The pathological effects of lipotoxicity have also been 
observed in renal cells and promote podocyte injury, tubular damage, 
mesangial proliferation, endothelial activation, and macrophage-
derived foam cell formation (32). Metabolic abnormalities and 
OXPHOS are the predominant contributors to DN.

DN is also associated with elevated expression levels of OXPHOS-
related genes and pathways (33). Mitochondria are the site of cellular 
respiration and generate energy as ATP through OXPHOS; therefore, 
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mitochondrial dysfunction has been implicated in DN. Mitochondria 
are also an important cellular source of reactive oxygen species (ROS) 
through the OXPHOS pathway (34, 35). Oxidative stress plays an 
important role in diabetic vascular complications (36), while 
hyperglycemia induces intracellular ROS production in interstitial 

cells and diabetic kidneys (37, 38). Based on indirect evidence, it has 
been hypothesized that increased oxidative stress contributes to the 
development of DN. Smad4 promotes DN by regulating glycolysis and 
OXPHOS (39). Furthermore, OXPHOS, electron transport system 
complex III, the citric acid cycle, propionate metabolism, and 
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FIGURE 5

Definition of clusters and dimensionality reduction for visual representation of the cells. (A) UMAP of single cells from DN samples and normal samples 
before comments. (B) UMAP of single cells from DN samples and normal samples after the comment. (C) UMAP of single cells from DN samples and 
normal samples between DN and the control. (D) Single-cell analysis of differential genes in DN and control.
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transcription factors are all key contributors to metabolic 
abnormalities in DN (33). The paradigm that high glucose drives the 
overproduction of superoxide in mitochondria, as a unifying theory 
to explain end-organ damage in complications resulting from diabetes, 
has been upheld for more than a decade (40).

Considering its widespread prevalence and massive toll on health 
and finances, the diagnosis and management of DN are of great 
clinical and social relevance. Correlation and subgroup analyses of 
pivotal genes associated with the clinical features of DN showed that 
ALB, ANXA1, APOH, C3, CCL19, COL1A2, COL3A1, COL4A1, 
COL6A3, CXCL6, DCN, EGF, HRG, KNG1, LUM, SERPINA3, SPARC, 
SRGN, and TIMP1 may all be  involved in diabetic renal tubular 
interstitial injury (41). A urine transcriptome test also showed that 
urinary sediment CCL5 and CXCL1 mRNAs were upregulated in 
patients with DN, while being associated with a decline in renal 
function and the degree of renal interstitial fibrosis. Therefore, urinary 
sediment CCL5 mRNA could be a potential prognostic biomarker of 
DN (42). Transcriptome analysis of osteoporosis in DN patients 
treated with traditional Chinese medicine showed that miR-574 may 
play an important role in DN-related osteoporosis, with the 

therapeutic effects of kaempferol and quercetin on Leri–Weill 
dyschondrosteosis in DN-related osteoporosis potentially mediated 
by miR-574 by targeting MAPK1 (43).

In this study, we first identified potential biological gene markers 
of MetS and DN before further analyzing the metabolic and immune 
pathways involved in these conditions. The role of PLEKHA1 in 
OXPHOS, which is involved in DN, was investigated via single-cell 
analysis, and PLEKHA1 was identified as a potential biological marker 
of DN worthy of further study.

SGLT2 inhibitors have potential as an antifibrotic therapeutic 
intervention by regulating inflammation, oxidative stress, 
mitochondrial function, and autophagy. GLP-1 agonists reduce 
inflammation and oxidative stress, which can damage the kidneys in 
people with diabetes. CCR2/5 inhibitors block the chemokine 
receptors CCR2/CCR5, reducing immune cell infiltration, cytokine 
production, and slowing DN progression (44, 45). However, more 
research is needed to verify their safety and efficacy in the treatment 
of fibrotic diseases (46). Our research highlighted PLEKHA1 as a key 
gene in the development of DN. Future studies should investigate the 
effects of drug treatment on single cells of patients with diabetes to 

A

B

FIGURE 6

Relationship between biological markers. (A) The relationship between PLEKHA1 and CSGALNACT1. (B) The relationship between PLEKHA1 and PAK2.
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validate PLEKHA1 as a therapeutic target and inform the development 
of targeted therapies.

Our study of the shared biological markers of DN and MetS is 
critical to understanding the comorbidities between these conditions. 
To increase our sample size, we used transcriptome datasets of DN 
from the GEO database and adjusted for batch effects. We incorporated 
both transcriptome and single-cell analyses, allowing us to draw a 
definite conclusion. However, our study is not without limitations. 
We could not collect clinical data, which limited our ability to conduct 
further analysis on clinical prognosis. Furthermore, our study focused 

solely on the genetic aspect and lacked a control treatment group. 
These limitations underscore the need for future research to focus on 
clinical applications and treatments to enhance the practical 
implications of our findings.

In conclusion, a functional enrichment analysis was performed 
based on the common patterns of differential gene expression between 
DN and MetS, and these differential genes were found to be related to 
immunity and metabolism. Further screening of potential biological 
markers resulted in the identification of seven well-fitting genes. 
Subsequently, the relationship between PLEKHA1 and OXPHOS in DN 

A B

C D

E F

FIGURE 7

Association between the PLEKHA1 gene and single-cell oxidative phosphorylation. (A–E) Violin plot of potential biological markers and single-cell 
oxidative stress in DN: B cell. Proximal tubular cell. Distal tubular cell. Macrophages. Endothelial cell. (F) The relationship between PLEKHA1 and single-
cell oxidative stress in DN was demonstrated by UMAP diagrams.
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was further investigated by single-cell analysis. This study shows that 
overexpression of PLEKHA1 in B cells, proximal tubular cells, distal 
tubular cells, macrophages, and endothelial cells caused oxidative stress 
in the kidneys. The role of PLEKHA1 in OXPHOS, which is involved in 
DN, was investigated via single-cell analysis, and PLEKHA1 was 
identified as a potential biological marker of DN worthy of further study.
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