8,447 research outputs found

    Josephson Oscillation and Transition to Self-Trapping for Bose-Einstein-Condensates in a Triple-Well Trap

    Full text link
    We investigate the tunnelling dynamics of Bose-Einstein-Condensates(BECs) in a symmetric as well as in a tilted triple-well trap within the framework of mean-field treatment. The eigenenergies as the functions of the zero-point energy difference between the tilted wells show a striking entangled star structure when the atomic interaction is large. We then achieve insight into the oscillation solutions around the corresponding eigenstates and observe several new types of Josephson oscillations. With increasing the atomic interaction, the Josephson-type oscillation is blocked and the self-trapping solution emerges. The condensates are self-trapped either in one well or in two wells but no scaling-law is observed near transition points. In particular, we find that the transition from the Josephson-type oscillation to the self-trapping is accompanied with some irregular regime where tunnelling dynamics is dominated by chaos. The above analysis is facilitated with the help of the Poicar\'{e} section method that visualizes the motions of BECs in a reduced phase plane.Comment: 10 pages, 11 figure

    Spinor Decomposition of SU(2) Gauge Potential and The Spinor Structures of Chern-Simons and Chern Density

    Full text link
    In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinors is studied. Using this decomposition, the spinor strutures of the Chern-Simons form and the Chern density are obtained. Furthermore, by these spinor structures, the knot quantum number of non-Abelian gauge theory is discussed, and the second Chern number is characterized by the Hopf indices and the Brouwer degrees of ϕ\phi -mapping.Comment: 11 page

    Optimized Decimation of Tensor Networks with Super-orthogonalization for Two-Dimensional Quantum Lattice Models

    Full text link
    A novel algorithm based on the optimized decimation of tensor networks with super-orthogonalization (ODTNS) that can be applied to simulate efficiently and accurately not only the thermodynamic but also the ground state properties of two-dimensional (2D) quantum lattice models is proposed. By transforming the 2D quantum model into a three-dimensional (3D) closed tensor network (TN) comprised of the tensor product density operator and a 3D brick-wall TN, the free energy of the system can be calculated with the imaginary time evolution, in which the network Tucker decomposition is suggested for the first time to obtain the optimal lower-dimensional approximation on the bond space by transforming the TN into a super-orthogonal form. The efficiency and accuracy of this algorithm are testified, which are fairly comparable with the quantum Monte Carlo calculations. Besides, the present ODTNS scheme can also be applicable to the 2D frustrated quantum spin models with nice efficiency

    Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double well potential

    Get PDF
    We investigate the quantum dynamics of an experimentally realized spin-orbit coupled Bose-Einstein condensate in a double well potential. The spin-orbit coupling can significantly enhance the atomic inter-well tunneling. We find the coexistence of internal and external Josephson effects in the system, which are moreover inherently coupled in a complicated form even in the absence of interatomic interactions. Moreover, we show that the spin-dependent tunneling between two wells can induce a net atomic spin current referred as spin Josephson effects. Such novel spin Josephson effects can be observable for realistically experimental conditions.Comment: 8 page

    Maximal violation of Clauser-Horne-Shimony-Holt inequality for four-level systems

    Full text link
    Clauser-Horne-Shimony-Holt inequality for bipartite systems of 4-dimension is studied in detail by employing the unbiased eight-port beam splitters measurements. The uniform formulae for the maximum and minimum values of this inequality for such measurements are obtained. Based on these formulae, we show that an optimal non-maximally entangled state is about 6% more resistant to noise than the maximally entangled one. We also give the optimal state and the optimal angles which are important for experimental realization.Comment: 7 pages, three table
    corecore