10,128 research outputs found

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2−y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure

    Progress on the treatment of neovascular glaucoma

    Get PDF
    Neovascular glaucoma(NVG)is a kind of intractable eye disease with complex etiology, strong destruction and poor effect on treatment. Extensive retinal ischemia and hypoxia is the main etiology, and the key of treatment is early diagnosis, active prevention and taking effective measures to prevent the production of vascular endothelial growth factor. According to the related literature over recent years, the authors will discuss pros and cons for medical, surgical and combined treatment in this review

    First Abundance Measurement of Organic Molecules in the Atmosphere of HH 212 Protostellar Disk

    Get PDF
    HH 212 is one of the well-studied protostellar systems, showing the first vertically resolved disk with a warm atmosphere around the central protostar. Here we report a detection of 9 organic molecules (including newly detected ketene, formic acid, deuterated acetonitrile, methyl formate, and ethanol) in the disk atmosphere, confirming that the disk atmosphere is, for HH 212, the chemically rich component, identified before at a lower resolution as a "hot-corino". More importantly, we report the first systematic survey and abundance measurement of organic molecules in the disk atmosphere within ∼\sim 40 au of the central protostar. The relative abundances of these molecules are similar to those in the hot corinos around other protostars and in Comet Lovejoy. These molecules can be either (i) originally formed on icy grains and then desorbed into gas phase or (ii) quickly formed in the gas phase using simpler species ejected from the dust mantles. The abundances and spatial distributions of the molecules provide strong constraints on models of their formation and transport in star formation. These molecules are expected to form even more complex organic molecules needed for life and deeper observations are needed to find them.Comment: 12 pages, 4 figure

    CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer

    Full text link
    A polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum swapping, quantum computation and high precision quantum metrology. Here, we report on the generation of a continuous-wave pumped degenerated 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II phase-matched periodically poled KTiOPO4 crystal in a Sagnac interferometer. Hong-Ou-Mandel-type interference measurement shows the photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The wavelength of photons can be tuned over a broad range by changing the temperature of crystal or pump power without losing the quality of entanglement. This source will be useful for building up long-distance quantum networks

    Next-to-leading order QCD corrections to a heavy resonance production and decay into top quark pair at the LHC

    Full text link
    We present a complete next-to-leading order (NLO) QCD calculation to a heavy resonance production and decay into a top quark pair at the LHC, where the resonance could be either a Randall-Sundrum (RS) Kaluza-Klein (KK) graviton GG or an extra gauge boson Z′Z'. The complete NLO QCD corrections can enhance the total cross sections by about 80%−100%80\%- 100\% and 20%−40%20\%- 40\% for the GG and the Z′Z', respectively, depending on the resonance mass. We also explore in detail the NLO corrections to the polar angle distributions of the top quark, and our results show that the shapes of the NLO distributions can be different from the leading order (LO) ones for the KK graviton. Moreover, we study the NLO corrections to the spin correlations of the top quark pair production via the above process, and find that the corrections are small.Comment: Published version in PR
    • …
    corecore