113 research outputs found

    The Bioactivated Interfacial Behavior of the Fluoridated Hydroxyapatite-Coated Mg-Zn Alloy in Cell Culture Environments

    Get PDF
    A partially fluorine substituted hydroxyapatite- (FHA-) coated Mg-Zn alloy was prepared to investigate the interfacial behavior of degradable Mg-based biomaterials with degradable bioactive coatings in a cell culture environment. Peaks from the results of X-ray diffraction (XRD) were characterized and compared before and after cell culture. It was found that Ca-P, including poorly crystalline ion-substituted Ca-deficient HA (CDHA), was formed in greater amounts on the interface of coated samples compared with the uncoated ones. A thermodynamic mechanism for Ca-P formation on biodegradable Mg alloys in a cell culture environment is proposed. Combined with improved cell calcification, the-FHA coated Mg alloys have the ability to promote CDHA formation, as expected thermodynamically. It is suggested that the specific cell culture environment and the bone-like FHA coatings together facilitate the observed behavior. Moreover, cell culture environment probably increased the biomineralization to a detectable level by affecting the kinetics of apatite formation

    Three-Dimensional Reconstruction of Thoracic Structures: Based on Chinese Visible Human

    Get PDF
    We managed to establish three-dimensional digitized visible model of human thoracic structures and to provide morphological data for imaging diagnosis and thoracic and cardiovascular surgery. With Photoshop software, the contour line of lungs and mediastinal structures including heart, aorta and its ramus, azygos vein, superior vena cava, inferior vena cava, thymus, esophagus, diaphragm, phrenic nerve, vagus nerve, sympathetic trunk, thoracic vertebrae, sternum, thoracic duct, and so forth were segmented from the Chinese Visible Human (CVH)-1 data set. The contour data set of segmented thoracic structures was imported to Amira software and 3D thorax models were reconstructed via surface rendering and volume rendering. With Amira software, surface rendering reconstructed model of thoracic organs and its volume rendering reconstructed model were 3D reconstructed and can be displayed together clearly and accurately. It provides a learning tool of interpreting human thoracic anatomy and virtual thoracic and cardiovascular surgery for medical students and junior surgeons

    Doping inorganic ions to regulate bioactivity of Ca–P coating on bioabsorbable high purity magnesium

    Get PDF
    AbstractPerformance of biomaterials was strongly affected by their surface properties and could be designed artificially to meet specific biomedical requirements. In this study, F−(F), SiO42−(Si), or HCO3−(C)-doped Ca–P coatings were fabricated by biomimetic deposition on the surface of biodegradable high-purity magnesium (HP Mg). The crystalline phases, morphologies and compositions of Ca–P coatings had been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The biomineralization and corrosion resistance of doped Ca–P coatings had also been investigated. The results showed that the Ca–P coating with or without doped elements mainly contained the plate-like dicalcium phosphate dehydrate (DCPD) phase. The doped F, Si, or C changed the surface morphology of Ca–P coatings after mineralization. Doped F enhanced the mineralization of Ca–P coating, and doped Si retarded the mineralization of Ca–P coating. However, H2 evolution of HP Mg discs with different Ca–P coatings was close to 0.4–0.7ml/cm2 after two-week immersion. That meant that the corrosion resistance of the Ca–P coatings with different or without doped elements did not change significantly

    Structure and Morphology Characteristics of Fullerene C 60

    Get PDF
    Fullerene C60 nanotubes (FNTs) were prepared via liquid-liquid interfacial precipitation using N-methyl-2-pyrrolidone (NMP) as solvent and isopropyl alcohol (IPA) as precipitation agent at 8°C. C60-saturated NMP solutions were exposed to visible light to promote the growth of FNTs. Scanning electron microscopy revealed that fibers prepared in the NMP/IPA system show three different morphologies. On the basis of the different morphologies of fullerene C60 nanofibers (FNFs), a possible growth mechanism to describe the formation process of FNTs is proposed

    The Study of Zeolitic Imidazolate Framework (ZIF-8) Doped Polyvinyl Alcohol/Starch/Methyl Cellulose Blend Film

    Get PDF
    ZIF-8 nanoparticle-doped polyvinyl alcohol (PVA)-S-MC films were prepared via casting method. The effect of different concentrations of ZIF-8 on the physical properties and structural characterization of the films were investigated. The results indicated that ZIF-8 could increase the water resistance and mechanical property of the membrane. Through FTIR, scanning electron microscope (SEM), atomic force microscope (AFM), and TGA analysis, it was found that ZIF-8 changed the phenomenon of macromolecule agglomeration and improved the thermal stability of the membrane. The breathable behavior of the film was also studied through oxygen permeability and water vapor permeability analysis. The result illustrated that the breathability of the film improved significantly by adding ZIF-8. The maximum reached when the weight ratio of ZIF-8 was 0.01 wt %. The property expands the application of PVA/starch blend film in the postharvest technology of fruits and vegetables
    corecore