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Abstract: ZIF-8 nanoparticle-doped polyvinyl alcohol (PVA)-S-MC films were prepared via casting
method. The effect of different concentrations of ZIF-8 on the physical properties and structural
characterization of the films were investigated. The results indicated that ZIF-8 could increase
the water resistance and mechanical property of the membrane. Through FTIR, scanning electron
microscope (SEM), atomic force microscope (AFM), and TGA analysis, it was found that ZIF-8
changed the phenomenon of macromolecule agglomeration and improved the thermal stability of the
membrane. The breathable behavior of the film was also studied through oxygen permeability and
water vapor permeability analysis. The result illustrated that the breathability of the film improved
significantly by adding ZIF-8. The maximum reached when the weight ratio of ZIF-8 was 0.01 wt %.
The property expands the application of PVA/starch blend film in the postharvest technology of fruits
and vegetables.

Keywords: PVA/starch; composite membrane; metal-organic frameworks

1. Introduction

In the past decades, the excessive use of petroleum based plastics had generated amounts of
non-degradable waste, which could cause severe impact on both marine and continental ecosystem,
as well as the health of human beings and animals [1]. A sustainable, degradable, and economically
viable material is hereby needed. Starch is one of the most promising materials for biodegradable
polymers because of its low cost, abundance in nature, and availability. Some of the disadvantages of
starch polymer, such as poor mechanical properties and water barrier, seriously hinder its applications.
However, the shortcomings of starch films could be improved by blending other synthetic or composite
materials. Among the great diversity of biodegradable materials, polyvinyl alcohol (PVA) is a potential
material which possesses favorable mechanical property, excellent transparency, and thermal stability,
as well as good gas barrier and water vapor permeability. PVA and starch have favorable compatibility
because of the existence of hydroxyl in the molecules. Thus, PVA/starch blends have drawn widespread
interest of researchers because of its nontoxic, membrane-forming, degradable and favorable mechanical
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property in recent years. Kanda prepared cassava starch/PVA membrane with high crystallinity and
hydrophobicity. Luo found the Tm of corn starch/PVA membrane could be improved by gelatinization
of starch [2]. The moisture sensitivity of starch/PVA membrane could be reduced by crosslink with
sodium hexametaphosphate [3]. The PVA/starch membrane also has excellent physical properties
because of the ageing of starch was inhibited [4].

To further improve the functionality of PVA/starch membrane, many modification strategies have
been developed. The nano-materials were reported that could effectively improve the strength, thermal
stability, hydrophilicity, and antibacterial properties of the PVA/starch membranes. Nooshin and some
researchers claimed that the mechanical properties of PVA/starch membrane were enhanced with the
addition of cellulose [5–8]. Hatami improved thermal stability of the PVA membrane by incorporating
nanosilica while Wu introducing graphene oxide [9,10]. Jahan and Wang revealed the moisture uptake
decreased by adding cellulose nanocrystal and clay, respectively [11,12]. Some researchers [10,13,14]
introduced nanotitania and silver nanoparticles into PVA/starch membrane, the results demonstrated
those nanomaterials have positive effects on antibacterial properties.

Mental-organic frameworks (MOFs) possess many preeminent properties such as high specific
surface area, high porosity, antibacterial properties, adjustable pore size, and selective permeability for
gases, as well as outstanding thermal and chemical stability [15–20]. Frederik employed trifluoroacetic
acid and HCl during the synthesis of UIO-66, the crystallinity and pore size were raised with partial
substitution of terephthalates by trifluoroacetate [21]. Jianwei et al. found the particle size increased
with the addition of formic acid while agglomeration reduced [22]. Bingchen achieved their best CO2

separation ability through controlling the size and morphology of ZIF-8 by adjusting the reaction
time [23]. Mohd enhanced both CO2 permeability and CO2/CH4 selectivity of 6FDA-DAM membrane
by introducing Zr-MOF [24]. Hulya reported that doped different metal ions such as Cu, Co in MOF
could improve gas permeability in different content [25]. However, there were rarely related reports
concern about MOFs PVA/starch film.

Zeolitic imidazolate frameworks (ZIF-8), are subspecies of metal-organic frameworks with zeolites
isomorphs which are widely used in the gas separation. Therefore, the aim of the present study was to
develop a water-soluble and degradable PVA/starch/cellulose blend film doped by ZIF-8 via solution
casting method. PVA and starch were employed as mainly membrane-forming materials, and methyl
cellulose was introduced to reinforce and mitigate the poor mechanical properties. 1,4-butanediol
was used as plasticizer to subvert the structure of high molecules and weaken the mutual interaction
between the raw materials. A certain amount of ZIF-8 nanoparticles were added to improve the
breathability and physical properties of the composite membrane. Besides, microstructure, oxygen
permeability, hydrophilic, mechanical property as well as thermal analyses of the modified membrane
were evaluated.

2. Materials and Methods

2.1. Materials

Polyvinyl alcohol (PVA) (degree of polymerization: 1700, degree of hydrolysis: 87%–89%), were
purchased from Aladdin reagent Shanghai Co., Ltd. (Shanghai, China); corn starch (Sinopharm
Chemical Reagent Co., Ltd. Beijing, China); methyl cellulose-M450 (Tianjin Damao Chemical Reagent
Factory, Tianjin, China); 1,4-butanediol (Tianjin Beilian Fine Chemicals Development Co., Ltd. Tianjin,
China); methanol (Sinopharm Chemical Reagent Co., Ltd. Beijing, China); zinc nitrate hexahydrate
(Tianjin Damao Chemical Reagent Factory, Tianjin, China); 2-methylimidazole (Aladdin reagent
Shanghai Co., Ltd. Shanghai, China). All the chemicals were analytically pure. The deionized water
(Millipore Milli-Q) was used throughout.
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2.2. Preparation of ZIF-8 Nanoparticle and PVA/Starch Blend Film

ZIF-8 nanoparticles were synthesized using the solvothermal method. Total of 0.297 g zinc
nitrate hexahydrate and 0.66 g 2-methylimidazole were each dissolved in 11.3 g methanol solution.
The solutions were sonicated at room temperature until zinc nitrate hexahydrate and 2-methylimidazole
were sufficiently dissolved in methanol before they were mixed up. The ZIF-8 growth was conducted
at 40 ◦C with stirring for 2 h. The ZIF-8 nanoparticles were dried at 120 ◦C after triple cleaning and
centrifuged with methanol.

The PVA/starch/methyl cellulose blend films were prepared by the solution casting method.
The constant weight ratio of PVA and starch (7:3) were used throughout the whole experiment. A total
of 7 g PVA and 3 g starch were dissolved in 70 mL 90 ◦C deionized water with constant stirring for
1 h. 10 g 1, 4-butanediol was utilized as the plasticizer. Different weight ratios of cellulose (1, 3, 5,
7 wt. %, w/w of PVA/starch blend) were added into the homogeneous mixture after it cools down
to 70 ◦C in order to increase the solubility of starch and cellulose in water. For the preparation of
PVA/starch/MC/ZIF-8 films, the ZIF-8 particles (0.01, 0.05, 0.09, w/w of PVA/starch blend) were added
into the deionized water for 60 min ultrasonic dispersion. The ZIF-8 solution was then mixed with the
blend at 90 ◦C and stirred vigorously for 12 h until the formation of a homogeneous solution. Finally,
the nanomaterial composite solution was cast onto the PTFE plate. The thickness of the polymer film
was maintained by a micrometer adjustable film applicator (BGD 209/2, Guangzhou Standard Geda
Laboratory Instrument Co., Ltd. Guangzhou, China); the average thickness of each film is listed in
Table 1. The films were preserved in a desiccator with constant temperature and humidity after dried
in the oven at 80 ◦C for 20 min and 110 ◦C for 10 min.

Table 1. Average thickness of films.

Film Composite Thickness (um)

PVA-S 98.3 ± 0.23
PVA-S-MC 1% 97.9 ± 0.12
PVA-S-MC 3% 97.8 ± 0.14
PVA-S-MC 5% 97.5 ± 0.25
PVA-S-MC 7% 98.1 ± 0.14

PVA-S-MC5%-ZIF-8 0.01% 97.1 ± 0.16
PVA-S-MC5%-ZIF-8 0.05% 97.4 ± 0.27
PVA-S-MC5%-ZIF-8 0.09% 97.9 ± 0.19

2.3. Nanostructure Characterization

FT-IR spectra of the ZIF-8 nanoparticles and blend films were recorded at room temperature
using IRAffinity-1 spectrometer (Bruker Corporation Blairica, Massachusetts, USA) attached to the
universal ATR accessory over the wavenumber range from 4000 to 400 cm−1 and 2 cm−1 resolution.
The films were mounted directly in the sample holder while the ZIF-8 nanoparticles were mixed
with KBr powder where the pure KBr baseline was subtracted from the spectra. The XRD pattern of
ZIF-8 nanoparticles were tested by X-ray diffractometer (Shimadzu Corporation, Tokyo, Japan) with a
nickel-filtered Cu Kα radiation beam (40 mA and 40 kV). The analysis was scanned from 2θ = 3◦ to
50◦ with 1◦/min scanning speed and 0.05◦ scan amplitude at ambient temperature. The Jade 6.0 XRD
pattern processing software was utilized for statistical analysis.

2.4. Morphology Analysis

The morphology of ZIF-8 nanoparticles, surface and cross-section of the film samples were
observed with a JSM-6700F scanning electron microscope (SEM) (JEOL, Japan) operated at a voltage of
5.0 or 10.0 kV. The AFM measurements were examined by MULTIMODE8 (Brook Technology Co., Ltd.
NASDAQ, USA). The membrane samples were placed on optical glass at ambient temperature with a
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silicon probe with a nominal tip radius of 2 nm and a resonant frequency of 70 kHz. The scanning rate
and area were 0.9 Hz and 20 µm × 20 µm respectively.

2.5. Mechanical Properties

The tensile strength (TS) and elongation at break (EB) of the films were measured with A1-7000M
tensile tester (High Speed Rail Technology Co., Ltd. Taiwan, China) according to the ASTM standard
method D882-12. The 4 mm × 75 mm dumbbell-shaped samples were cut from each prepared film and
mounted between the grips of the machine. The initial grip separation was set to 50 mm/min.

2.6. Thermo-Gravimetric Analysis

The thermal properties of the PVA/starch/MC/ZIF-8 blend films were measured using a SDT-Q600
thermal analyzer (TA Instruments, Newcastle, Delaware, USA). The samples of about 10 mg were
conditioned in an alumina crucible and heated from 25 to 800 ◦C at the rate of 10 ◦C/min with 50 mL/min
nitrogen flow.

2.7. Contact Angle

The hydrophilic of the film was estimated by optical contact angle method using a Digidrop
DX (GBX, Stuttgart, Germany). About 2 µL Millipore water droplets were put on the film surface
with a Micro syringe. The contact angle between the baseline of the drop and the tangent at the drop
bound-aryvalue were measured by a camera MV-50. At least three measurements were made for each
film sample and the average was calculated.

2.8. Water Vapour Permeability (WVP)

The method carried out by Muhammad Salman Sarwar [14] was simulated to examine the WVP
of the film samples. Total of 10 mL of deionized water was poured into a beaker with a diameter of
29.5 mm which was covered by film samples and tightened with Teflon tape. The weight of the beakers
was measured and then placed in an oven for 24 h at 40 ◦C. After 24 h, the beakers were withdrawn
from the oven and weighed again. Changes in the weight of the beaker were recorded as a function of
time. Water vapor permeability was calculated by Equation (1)

WVP =
Wi−We

A ∗ T

(
g/m2 h

)
(1)

where Wi is the initial weight of beaker; We is the weight of beakers at time T; A is the transmission
area of membrane; T is 24 h.

2.9. Water Solubility (WS)

The water solubility was characterized by recording the dissolve time of the film samples in the
deionized water. The film samples were cut into 15 mm × 15 mm and dried in the desiccator containing
calcium chloride until the constant weight reached. A 5-mm cross was marked on the center of each
film sample. The time which the cross disappear as the film sample immersed in deionized water was
defined as water solubility time of the film.

2.10. Oxygen Permeability (OP)

Oxygen permeability was measured by using the constant volume-variable pressure method with
Y310 membrane permeability testing machine (Guangdong Standard Packaging Equipment Co., Ltd.,
Guangzhou, China) at 23 ◦C and 53% RH [12]. The effective contact area during the measurements
was 50.25 cm2.
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2.11. UV-Visible Spectroscopy

The optical clarity of the PVA-S-MC film and PVA-S-MC-ZIF-8 nanocomposite films was measured
by the Perkin-Elmer Lambda25 UV/Vis spectrophotometer (PerkinElmer, New castle wilmilton,
Delaware, USA). The samples were cut in rectangular shapes. The scan range was 200–800 nm and
step size was 2 nm.

2.12. Statistical Analysis

Statistical difference in the properties of different samples were analyzed with ANOVA via SPSS
(version 22.0, SPSS Inc., Chicago, IL, USA).

3. Results and Discussion

3.1. Characterization of ZIF-8 Nanoparticles and PVA/Starch/MC/ZIF-8 Blend Films

The FTIR spectrum of the synthesized ZIF-8 nanoparticles and PVA/starch/MC/ZIF-8 blend films
are depicted in Figure 1. In terms of the ZIF-8 nanoparticles, the absorption bands at 3167.24 and
2990.21 cm−1 corresponded to C–H stretching of C=C and –CH3, respectively. The bands at 1541.31 and
1635.28 cm−1 were attributed to C=N and C=C stretching of imidazole ring while the sharp band at
449.50 cm−1 was assigned to N–Zn stretching. The band at 1333.18 cm−1 was related to the C–H bending
vibration of –CH3 and the band at 925.69 cm−1 was associated to the N–H swing. The peak position
and intensity are well agreed with the previous reports [18,26–29]. Then different concentrations of
ZIF-8 nanoparticles were added into the PVA/starch/MC blend. ZIF-8 nanoparticles have good affinity
and compatibility with the organic matrix because of the presence of the organic imidazole ring in
the molecule. Besides, the existence of nitrogen in ZIF-8 molecule could form a hydrogen bond with
hydrogen in the polymer matrix, which accelerates the film formation. It can be seen that the infrared
absorption peak at the wavelength from 3500 to 3000 cm−1 was the characteristic absorption peak of
hydroxyl stretching vibration caused by the stretching frequency of PVA and water. With the increase
of the ZIF-8 concentration, the O–H stretching vibration band shifted to the high-frequency region
and corresponding bands of the membrane became narrower and stronger. The peaks near 2937 and
2935 cm−1 were related to the C–H stretching of C=C, –CH3, and –CH2. The infrared absorption
peak near the wavenumber 1722, 1428, 1264 cm−1 were contributed by the C=O stretching, C–H
bending, and C–C stretching respectively. The peak near the wavenumber 1046 cm−1 attributed to
C–O stretching of PVA/starch/MC5% and C–N stretching of ZIF-8 [10,30,31]. As the concentration of
ZIF-8 increased, the hydrogen bond formed by the reaction between ZIF-8 and films enhanced the
degree of polarization of the chemical bond, making the absorption peak stronger.

The crystalline structure of the synthesized ZIF-8 nanoparticles was investigated by XRD analysis
as demonstrated in Figure 2. It can be found that the characteristic diffraction peaks of ZIF-8 at
2θ = 7.24◦,10.30◦,12.64◦,14.59◦,16.36◦,17.94◦, 24.42◦, and 29.58◦ [18,26,28,29,32–34]. The result indicated
that the ZIF-8 nanoparticle has formed a favorable crystal structure which has great potential to
improve the mechanical support and structural stability of the PVA/starch blend films. The morphology
of ZIF-8 nanoparticles is shown in Figure 3. It can be seen from the SEM pictures that the nanoparticles
are hexagonal in shape and the average diameter is around 100 nm, which is similar to the literature
dates reported by [18,29,32,35].
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3.2. Morphology Analysis of Films

The microstructure, spatial distribution, and dispersion of ZIF-8 in the PVA/starch/MC5% were
observed through a scanning electron microscope (SEM) and an atomic force microscope (AFM).
As shown in Figure 4, the blend film without ZIF-8 has smooth surface (a) and cross-section (b), which
reflected the satisfactory dispersion and compatibility of the high polymer materials. Both of the
surface (c) and cross-section (d) morphologies of films became rougher with the addition of ZIF-8
nanoparticles. The results agreed with the previous reports [18,26,28,36]. Although the roughness of
the films increased with concentration of ZIF-8, the distribution of the nanoparticles in the composite
became better simultaneously. The uniform dispersion of ZIF-8 could be attributed to the intrinsic
positive charge of 2-methylimidazole after protonation. So that the ZIF-8 nanoparticles repelled each
other by strong electrostatic interaction than aggregated [33]. Besides, the PVA/starch/MC and ZIF-8
nanoparticles could disperse in the same solvent, which is beneficial for the evenly mixing of ZIF-8
into the blend solution [27].
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The atomic force microscopy images are exhibited in Figure 5. The 3D images of the films show
a rough structure with valleys and peaks might be attributed to the branch of starch and methyl
cellulose [5,30]. The average roughness (Sq) increased with the increase of ZIF-8 content, which was
evidenced in SEM images before. The limited compatibility between blend and ZIF-8 nanoparticles
might be responsible for this phenomenon. From the value of Ssk we could conclude that there were
more hollows than peaks since they are negative value, which prefers the film possess a relatively
smooth surface. With the content of ZIF-8 increased, the Ssk value increased and revealed the increase
of roughness. Hence, the results of SEM and AFM consistently indicated that the roughness of films
increased with the content of ZIF-8 increase [26,28,37].
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3.3. Mechanical Properties

The values represent mean of five replicates.
The methyl cellulose has generated great interests due to its excellent mechanical property as a

source of fillers. The study investigated the effect of different mass fractions of methyl cellulose (0, 1, 3,
5 and 7 wt. %) on the tensile strength and elongation at break of the PVA/starch blend membranes.
The result was shown in Table 2. It could be seen that the tensile strength decreased slightly when
the mass fraction of methyl cellulose was 1%. It was because such a low concentration of methyl
cellulose was deemed as an impurity which destroyed the homogeneity of the film [5]. Then the tensile
strength of the film increased from 4.73 to 7.99 MPa as the content of methyl cellulose increased from
1% to 5%, due to the improvement of the interactive force between the methyl cellulose, starch and
PVA macromolecule. However, the tensile strength decreased again when the addition of the methyl
cellulose increased continuously. This was attributed to the slight aggregation of methyl cellulose at
such concentration [7,38]. The effect of different concentrations of methyl cellulose on the elongation at
break was similar to the tensile strength [39]. It can be seen from Table 1 that the maximum 505% was
reached when the methyl cellulose was 5%. Thus, it can be concluded that composite with addition of
5 wt. % methyl cellulose gives the best mechanical property with maximum tensile strength and a
satisfying elongation at break. The PVA-S-MC5% was then modified by different concentrations (0.01,
0.05, 0.09 wt. %) of ZIF-8 nanoparticle for further study.

Table 2. Mechanical properties of PVA/S/MC films and PVA/S/MC-ZIF-8 films.

Film Composite Tensile Strength (MPa) Elongation at Break (%)

PVA-S 5.36 ± 0.21 c 225 ± 2 d

PVA-S-MC 1% 4.73 ± 0.26 d 291 ± 2 d

PVA-S-MC 3% 6.42 ± 0.15 b 335 ± 2 d

PVA-S-MC 5% 7.99 ± 0.55 a 505 ± 3 c

PVA-S-MC 7% 6.62 ± 0.27 b 442 ± 1 d

PVA-S-MC5%-ZIF-8 0.01% 6.72 ± 0.16 b 554 ± 3 c

PVA-S-MC5%-ZIF-8 0.05% 8.92 ± 0.23 a 636 ± 2 b

PVA-S-MC5%-ZIF-8 0.09% 7.64 ± 0.19 a 747 ± 3 a

Different letters within the same column indicate significant differences (p < 0.05).
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As shown in Table 2, a slight decrease of tensile strength was observed as 0.01 wt % ZIF-8
nanoparticle was added to PVA-S-MC5%. The reason was similar to the explanation of 1 wt % methyl
cellulose was introduced. The tensile strength of the nanocomposite film increased to 8.92 MPa as the
concentration of the ZIF-8 was 0.05%. That was because there are more ZIF-8 nanoparticles distributed
between the macromolecules, which enhanced the intermolecular interaction including hydrogen
bonding and chemical bonding [40]. Moreover, the rigid structure of the ZIF-8 also elevated the chain
strength of the polymer [41]. As the content of ZIF-8 increased continuously, the tensile strength of the
membrane decreased again and even lower than the PVA-S-MC5%. This could be attributed to the
agglomeration and high porosity of ZIF-8 nanoparticles, which largely degrade the homogeneity of
the nanocomposite membrane [32]. Different from the tensile strength, the elongation at break of the
composite membrane increased with the increasing of ZIF-8 content. This could be attributed to the
inherent structure of the amorphous region of the polymer chain was destroyed as ZIF-8 nanoparticles
were introduced to the membranes. The steric hindrance of ZIF-8 disrupted the ordered arrangement
of the polymer chains and enhanced the fluidity of the chain [42].

3.4. Thermal Stability Analysis

TGA analysis was carried out to explore the thermal stability of the nanocomposite membranes
with different concentrations of ZIF-8. As shown in Figure 6, the thermal decomposition process of
four samples mainly contains four stages. The slight weight loss between 100 to 150 ◦C corresponded
to the unconjugated and chemically combined water in the films. When temperature raised from
150 to 300 ◦C, the weight losses of the nanocomposite membranes with different concentrations of
ZIF-8 were equivalent. Nevertheless, the PVA-S-MC5% exhibited lower weight loss during this period.
This is due to the decompositions of the branched-chains of the polymer, hydroxyl, and the residual
solvent in the pores of ZIF-8 nanoparticles [35,42]. From 300 to 420 ◦C, there was a heavyweight loss
because of the thermal decomposition of PVA, starch, and methyl cellulose and the volatilization of
the polymer products [10,31,35,38,43]. The result was opposite in the last stage, the films with ZIF-8
nanoparticles shown a lower weight loss during this period. This could be attributed to the porosity of
ZIF-8, and the interfacial gap between ZIF-8 and membrane decreased the heat transfer properties and
hindered the evaporation of the decomposition products [27,32]. When the temperature is raised above
420 ◦C, ZIF-8 decomposed and generated ZnO. The film further decomposed into charcoal [27,32,33].
In general, the concentration of ZIF-8 had little effect on the thermal stability of film, but the addition
of ZIF-8 could obviously improve the thermal stability and mechanical properties of the films.

3.5. Moisture Absorption

Figure 7 demonstrated that the PVA-S-MC5% has an extremely hydrophilic surface with a contact
angle of 4.52◦. The hydroxyls existed in abundance in PVA, starch, methyl cellulose, and plasticizer
accounted for this result [5,44,45]. The high polarity of the hydroxyl group also led to the relatively
high water vapor permeability and short water-soluble time. After different contents of ZIF-8 were
introduced into the film, the hydrophobicity of the membranes enhanced as indicated by the increase of
contact angle [26,35,36,42,46] and water-soluble time as well as the decrease of water vapor permeability.
The results were caused by the super-hydrophobic and relatively rigid structures of ZIF-8 nanoparticles.
The hydrophobicity of ZIF-8 prevented the diffusion of water molecules in the films, and the rigid
structure allowed films possess better resistant to dissolve in water. On the other hand, according to
the SEM photograph, the roughness of membrane increased after the incorporation of ZIF-8. The larger
roughness of the film also caused the increment of the contact angle [18]. Overall, the hydrophilicity
of the nanocomposite membranes were improved after the addition of ZIF-8 nanoparticles, which is
beneficial to its application in the high humidity environment.



Polymers 2019, 11, 1986 11 of 16

Polymers 2019, 11, x FOR PEER REVIEW 11 of 17 

 

As shown in Table 2, a slight decrease of tensile strength was observed as 0.01 wt % ZIF-8 
nanoparticle was added to PVA-S-MC5%. The reason was similar to the explanation of 1 wt % methyl 
cellulose was introduced. The tensile strength of the nanocomposite film increased to 8.92 MPa as the 
concentration of the ZIF-8 was 0.05%. That was because there are more ZIF-8 nanoparticles 
distributed between the macromolecules, which enhanced the intermolecular interaction including 
hydrogen bonding and chemical bonding [40]. Moreover, the rigid structure of the ZIF-8 also elevated 
the chain strength of the polymer [41]. As the content of ZIF-8 increased continuously, the tensile 
strength of the membrane decreased again and even lower than the PVA-S-MC5%. This could be 
attributed to the agglomeration and high porosity of ZIF-8 nanoparticles, which largely degrade the 
homogeneity of the nanocomposite membrane [32]. Different from the tensile strength, the elongation 
at break of the composite membrane increased with the increasing of ZIF-8 content. This could be 
attributed to the inherent structure of the amorphous region of the polymer chain was destroyed as 
ZIF-8 nanoparticles were introduced to the membranes. The steric hindrance of ZIF-8 disrupted the 
ordered arrangement of the polymer chains and enhanced the fluidity of the chain [42]. 

3.4. Thermal Stability Analysis 

100 200 300 400 500 600 700
-20

0

20

40

60

80

100

W
ei

gh
t (

%
)

Temperature,(℃)

 Film with 0.00wt.% ZIF-8 
 Film with 0.01wt.% ZIF-8 
 Film with 0.05wt.% ZIF-8 
 Film with 0.09wt.% ZIF-8 

 
Figure 6. TGA characterization of PVA/starch/MC blend films with different concentration of ZIF-8 
nanoparticle. 

TGA analysis was carried out to explore the thermal stability of the nanocomposite membranes 
with different concentrations of ZIF-8. As shown in Figure 6, the thermal decomposition process of 
four samples mainly contains four stages. The slight weight loss between 100 to 150 °C corresponded 
to the unconjugated and chemically combined water in the films. When temperature raised from 150 
to 300 °C, the weight losses of the nanocomposite membranes with different concentrations of ZIF-8 
were equivalent. Nevertheless, the PVA-S-MC5% exhibited lower weight loss during this period. This 
is due to the decompositions of the branched-chains of the polymer, hydroxyl, and the residual 
solvent in the pores of ZIF-8 nanoparticles [35,42]. From 300 to 420 °C, there was a heavyweight loss 
because of the thermal decomposition of PVA, starch, and methyl cellulose and the volatilization of 
the polymer products [10,31,35,38,43]. The result was opposite in the last stage, the films with ZIF-8 
nanoparticles shown a lower weight loss during this period. This could be attributed to the porosity 
of ZIF-8, and the interfacial gap between ZIF-8 and membrane decreased the heat transfer properties 
and hindered the evaporation of the decomposition products [27,32]. When the temperature is raised 
above 420 °C, ZIF-8 decomposed and generated ZnO. The film further decomposed into charcoal 

Figure 6. TGA characterization of PVA/starch/MC blend films with different concentration of
ZIF-8 nanoparticle.

Polymers 2019, 11, x FOR PEER REVIEW 12 of 17 

 

[27,32,33]. In general, the concentration of ZIF-8 had little effect on the thermal stability of film, but 
the addition of ZIF-8 could obviously improve the thermal stability and mechanical properties of the 
films. 

3.5. Moisture Absorption 

0 0.01 0.05 0.09

4

6

8

10

12

14

16

18

20

22

24

C
on

ta
ct

 a
ng

le
(°

)

Content of ZIF-8 in film/wt.%

(a)

 
0 0.01 0.05 0.09

76

78

80

82

84

86

88

90

W
at

er
 v

ap
or

 p
er

m
ea

bi
lit

y 
(g

/m
2 h)

Content of ZIF-8 in film/wt.%

(b)

 

0 0.01 0.05 0.09

60

70

80

90

100

110

120

130

140

150

W
at

er
 so

lu
bl

e t
im

e (
s)

Content of ZIF-8 in film/wt.%

 

(c)

 

Figure 7. Contact angle (a), water vapor permeability (WVP) (b) and water solubility (WS) (c) of 
PVA/starch/MC blend films with different concentration of ZIF-8 nanoparticles. 

Figure 7 demonstrated that the PVA-S-MC5% has an extremely hydrophilic surface with a 
contact angle of 4.52°. The hydroxyls existed in abundance in PVA, starch, methyl cellulose, and 
plasticizer accounted for this result [5,44,45]. The high polarity of the hydroxyl group also led to the 
relatively high water vapor permeability and short water-soluble time. After different contents of 
ZIF-8 were introduced into the film, the hydrophobicity of the membranes enhanced as indicated by 
the increase of contact angle [26,35,36,42,46] and water-soluble time as well as the decrease of water 
vapor permeability. The results were caused by the super-hydrophobic and relatively rigid structures 
of ZIF-8 nanoparticles. The hydrophobicity of ZIF-8 prevented the diffusion of water molecules in 
the films, and the rigid structure allowed films possess better resistant to dissolve in water. On the 
other hand, according to the SEM photograph, the roughness of membrane increased after the 
incorporation of ZIF-8. The larger roughness of the film also caused the increment of the contact angle 
[18]. Overall, the hydrophilicity of the nanocomposite membranes were improved after the addition 
of ZIF-8 nanoparticles, which is beneficial to its application in the high humidity environment. 

Figure 7. Contact angle (a), water vapor permeability (WVP) (b) and water solubility (WS) (c) of
PVA/starch/MC blend films with different concentration of ZIF-8 nanoparticles.



Polymers 2019, 11, 1986 12 of 16

3.6. Barrier Properties

The oxygen permeability of films with different contents of ZIF-8 is shown in Figure 8. In the case
of 0.01% ZIF-8, the oxygen permeability increased by 334.58% compared with the PVA-S-MC5%. PVA
is a good barrier against oxygen and the PVA based membranes usually had low oxygen permeability
as the result in our study. After ZIF-8 was introduced into the blend, the high porosity in nanoparticles
and voids between ZIF-8 and polymer matrix provided channels for gas molecules to migrate through
the film [32,46]. In addition, the destructive action of ZIF-8 on the amorphous region of the polymer
enhances the mobility of the polymer chain and the roughness of the membrane, providing more
effective area of the membrane and the possibility for gas molecules to pass through the chain gap [28,42].
When ZIF-8 content increased to 0.05% and 0.09%, a rapid decline of OP appeared and the value was
close to PVA-S-MC5% which was 0.7 × 10−6 cm3/(m2 s pa). The possible reason should be that mounts
of ZIF-8 deposited evenly in the gap between the polymers and blocked the channel of gas molecules.Polymers 2019, 11, x FOR PEER REVIEW 13 of 17 
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3.7. UV–Visible Spectroscopy Analysis of Nanocomposite Films

The digital photos of films and UV-visible spectroscopy were shown in Figure 9. From Figure 9a it
can be observed that all the films are transparent and the transparency was not affected after the addition
of ZIF-8. The phenomenon can be attributed to the small size of ZIF-8 and their good dispersion in
polymer [30]. Generally, the consumers prefer the packaging bag with high transparency which they
could observe the food directly. On the other hand, the films with low UV-visible transmittance are
good for foods since it can prevent lipids oxidation induced by visible light [39]. In our research,
PVA-S-MC film possess highest transmittance, and the transmittance decreased with increase of
ZIF-8 nanoparticles. The decrease of transmittance with addition of ZIF-8 was resulted from the
low light transmission of particles and scattering of light [43]. The more ZIF-8 added, the lower the
transmittance. Besides, relatively uneven distribution of ZIF-8 in polymer when its content increased
to 0.05% and 0.09% also caused decrease of transmittance. The decrease of transmittance is beneficial
for food package.
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4. Conclusions

In this work, we have successfully synthesized ZIF-8 nanoparticles with the diameter about
100 nm and introduced it into the PVA-S-MC5% films. The effects of the concentration of ZIF-8
on the performance of films were investigated. The tensile strength and elongation at break of the
nanocomposite film reached the maximum as the content of the ZIF-8 was 0.05%. Meanwhile, the
thermal stability of blend films improved with the addition of ZIF-8. The SEM and AFM indicated
that ZIF-8 changed the agglomeration of the raw materials and increased the roughness of the
membranes. Because of the component and porous structure of ZIF-8, the water-resisting property of
the nanocomposite membrane increased as the content of ZIF-8 increases, which was embodied in the
water-soluble time and water vapor permeability. The oxygen permeability increased first and then
declined as a result of ZIF-8 blocking the gap between macromolecules which provide channel for
gas molecule. In summary, it can be concluded that 0.05% ZIF-8 loaded PVA/starch/methyl cellulose
blend film possess the optimum performance and expand the application of film in postharvest of
fruits and vegetables.
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