2,421 research outputs found

    Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films

    Get PDF
    Journal ArticleWe demonstrate an approach for determining the "effective" Ehrlich-Schwoebel (ES) step-edge barrier, an important kinetic constant to control the interlayer mass transport in epitaxial growth of thin films. The approach exploits the rate difference between the growth and/or decay of an adatom and a vacancy two-dimensional island, which allows the "effective" ES barrier to be determined uniquely by fitting with a single parameter. Application to growth of Pb islands produces an effective ES barrier of ~83±10 meV on Pb(111) surface at room temperature

    Fabricating artificial nanowells with tunable size and shape by using scanning tunneling microscopy

    Get PDF
    Journal ArticleThe authors report a method of precisely fabricating the large-scale nanocrystals with well-defined shape and size. The (111) oriented Pb islands deposited on Si(111)-7x7 substrate were investigated with a manipulation technique based on scanning tunneling microscopy. By applying a series of voltage pulses on the as-grown islands, artificial center-full-hollowed or half-hollowed nanowells are created, and the thickness and shape can be precisely regulated via tuning the manipulation parameters. Artificial nanoarray patterns in micron scale are also constructed using this method

    Influence of quantum size effects on Pb island growth and diffusion barrier oscillations

    Get PDF
    Journal ArticleQuantum size effects are successfully exploited in manipulating the growth of (111) oriented Pb islands on Si(111) substrate with a scanning tunneling microscope. The growth dynamics and morphology displayed can be well controlled through the quantum size effects defined by the island thicknesses and the interplay with the classical forces. The transition of growth modes from quantum to classical regime and the quantum beating in morphological dynamics are directly identified in real space and quantitatively analyzed. Atomic diffusion barriers, an important parameter in the thin film growth process, are also demonstrated to be modified by quantum size effects, and oscillate with a two-monolayer periodicity

    Geometric curvatures of plane symmetry black hole

    Get PDF
    In this paper, we study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. Weinhold metric and Ruppeiner metric are obtained, respectively. The Weinhold curvature gives phase transition points, which correspond to the first-order phase transition only at N=1, where NN is a parameter in the plane symmetry black hole. While the Ruppeiner one shows first-order phase transition points for arbitrary N≠1N\neq 1. Both of which give no any information about the second-order phase transition. Considering the Legendre invariant proposed by Quevedo et. al., we obtain a unified geometry metric, which gives a correctly the behavior of the thermodynamic interactions and phase transitions. The geometry is also found to be curved and the scalar curvature goes to negative infinity at the Davies' phase transition points when the logarithmic correction is included.Comment: 16 pages, 6 figure

    trans-Bis[4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole-κN 3]diaqua­cobalt(II) bis­(3-carb­oxy-5-nitro­benzoate)

    Get PDF
    The title complex, [Co(C12H10N6)2(H2O)2](C8H4NO6)2, is composed of a mononuclear cobalt(II) cation and two 3-carb­oxy-5-nitro­benzoate anions for charge balance. In the cation, the CoII atom is six-coordinated in a distorted octa­hedral geometry. It bonds to two O atoms of two water mol­ecules, and two pairs of N atoms from two 4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole mol­ecules, which behave as bidentate chelating ligands. There are intra­molecular N—H⋯N hydrogen bonds in the cation. In the crystal, there are a number of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, as well as inter­molecular π–π stacking inter­actions [centroid–centroid distances = 3.657 (2) and 3.847 (2) Å], that link the mol­ecules into two-dimensional networks lying parallel to the ab plane. The presence of C—H⋯O inter­actions leads to the formation of a three-dimensional network
    • …
    corecore