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We study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. We find
that theWeinhold curvature gives the first-order phase transition at𝑁 = 1, whereN is a parameter of the plane symmetry black hole
while the Ruppeiner one shows first-order phase transition points for arbitrary𝑁 ̸= 1. Considering the Legendre invariant proposed
by Quevedo et al., we obtain a unified geometry metric, which contains the information of the second-order phase transition. So,
the first-order and second-order phase transitions can be both reproduced from the geometry curvatures. The geometry is also
found to be curved, and the scalar curvature goes to negative infinity at the Davie phase transition points beyond semiclassical
approximation.

1. Introduction

Several decades ago, the original work of Bekenstein and
Hawking showed that the black hole is indeed a thermody-
namics system [1, 2]. It was also found that the black hole
satisfies four laws of the elementary thermodynamics with
regarding the surface gravity and the outer horizon area as
its temperature and entropy, respectively [3]. Although, it is
widely believed that a black hole is a thermodynamic system,
the statistical origin of the black hole entropy is still one of
the most fascinating and controversial subjects today.

The investigation of thermodynamic properties of black
holes is also a fascinating subject. Much of work had been
carried out on the stability and phase transitions of black
holes. It is generally thought that the local stability of a black
hole is mainly determined by its heat capacity. Negative heat
capacity usually gives a thermodynamically unstable system,
and the positive one implies a local stable one. The divergent
points of the heat capacity are usually consistent with the
Davies points, where the second-order phase transition takes
place [4–6].

The properties and phase transitions of a thermodynamic
system can also be studied with the idea of geometry.
Weinhold [7] first introduced the geometrical concept into
the thermodynamics. He suggested that a Riemannianmetric
can be defined as the second derivatives of internal energy 𝑈

with respect to the entropy and other extensive quantities of a
thermodynamic system.However, it seems that theWeinhold
geometry has not much physical meanings. Few years later,
Ruppeiner [8] introduced anothermetric, which is analogous
to the Weinhold one. The thermodynamic potential of the
Ruppeiner geometry is the entropy 𝑆 of the thermodynamic
system rather than the internal energy 𝑈. In fact, the two
metrics are conformally related to each other:

𝑑𝑠
2

𝑅
=

1

𝑇
𝑑𝑠
2

𝑊
, (1)

with the temperature 𝑇 as the conformal factor. The Rup-
peiner geometry had been used to study the ideal gas and the
van der Waals gas. It was shown that the curvature vanishes
for the ideal gas, whereas for the van der Waals gas, the
curvature is nonzero and diverges only at those points where
the phase transitions take place (for details see the review
paper [9]). The black hole, as a thermodynamics system,
has been extensively investigated. The Weinhold geometry
and the Ruppeiner geometry were obtained for various black
holes and black branes [4–30]. In particular, it was found
that the Ruppeiner geometry carries the information of
phase structure of a thermodynamic system. In general, its
curvature is singular at the points, where the phase transition
takes place. However, for the Banados-Teitelboim-Zanelli
(BTZ) and Reissner-Nordström (RN) black holes, the cases
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are quite different. The Ruppeiner geometries give a van-
ished curvature, which means there exist no thermodynamic
interactions and no phase transition points.There exist phase
transition points for the two kinds of black hole. For the
contradiction, much research has been carried out to explain
it. The main focus is on the thermodynamic potential, which
is generally believed to be the internal energy 𝑈 rather than
the mass 𝑀. For the Reissner-Nordström black hole, it was
argued in [18] that the thermodynamic curvature should be
reproduced from the Kerr-Newmann anti-de sitter black hole
with the angular momentum 𝐽 → 0 and cosmological
constant Λ → 0. Another explanation of the contradiction
was presented by Queved et al. few years ago [31, 32]. They
pointed out that the origin of the contradiction is that the
Weinhold metric and Ruppeiner metric are not Legendre
invariants. A Legendre invariant metric was introduced by
them, which could reproduce correctly the behavior of the
thermodynamic interactions and second-order phase tran-
sitions for the BTZ and RN black holes [33, 34] and other
black hole configurations and models [35–38]. Inspired by
the thermodynamic geometry, Liu et al. recently proposed a
free energymetric [39], which can give a better description on
the phase transition for a black hole.The authors also showed
that, for a systemwith 𝑛-pairs of intensive/extensive variables,
different thermodynamicmetrics can be embedded into a flat
(𝑛, 𝑛)-dimensional space. The method has been extended to
different black holes [40–44].

Another interesting and important question of this field is
how the geometry behaves beyond semiclassical approxima-
tion. It is generally believed that there will be a logarithmic
corrected term to the entropy when the semiclassical black
hole extends to its quantum level [45, 46]. Considering the
correction term, the geometry structure was studied in [33,
47] for the BTZblack hole. Especially, its Ruppeiner curvature
will be nonzero beyond semiclassical approximation.The aim
of this paper is to study the phase transitions and geometry
structure of the plane symmetry black hole. Firstly, we study
the thermodynamic stability of the plane symmetric black
hole. It is shown that there always exist locally thermody-
namically stable phases and unstable phases for the plane
symmetric black hole due to suitable parameter regimes.
Then, three different geometry structures are obtained. The
Weinhold curvature gives phase transition points, which
correspond to that of the first-order phase transition only at
𝑁 = 1, while the Ruppeiner one shows first-order phase tran-
sition points for arbitrary 𝑁 ̸= 1. Considering the Legendre
invariant, we obtain a unified geometry metric, which gives
a correct behavior of the thermodynamic interactions and
phase transitions. It is found that the curvature constructed
from the unifiedmetric goes to negative infinity at theDavies’
points, where the second-order phase transition takes place.
The geometry structure is also studied as the logarithmic
correction is included. The results show that the unified
geometry behaviors differ when logarithmic correction term
is included. However, it has no effect on the unified geometry
depicting the phase transitions of the plane symmetric black
hole.

The paper is organized as follows. In Section 2, we
first review some thermodynamic quantities of the plane

symmetric black hole. The thermodynamic stability is also
studied. In Section 3, both the Weinhold and Ruppeiner
geometry structures are obtained. However, they fail to give
the information about the second-order phase transition
points. For the reason, we give a detailed analysis and obtain
a new Legendre invariant metric structure which could give
a good description of the thermodynamic interactions and
phase transitions in Section 4. Unified geometry structure
beyond semiclassical approximation is also considered in
Section 5. Finally, the paper ends with a brief conclusion.

2. Thermodynamic Quantities and
Thermodynamic Stability of the Plane
Symmetric Black Hole

In this section, we will present the thermodynamic quantities
and other properties of the plane symmetric black hole. The
local thermodynamic stability of it is also discussed. The
action depicting the plane symmetric black hole is given by

𝑆 =
1

16𝜋
∫𝑑
4
𝑥√−𝑔 (R − 2(∇𝜑)

2

− 2Λ𝑒
2𝑏𝜑

− 𝑒
−2𝑎𝜑

𝐹
2
) ,

(2)

where 𝜑 is a dilaton field and 𝑎, 𝑏 are constants. The negative
cosmological constant is Λ = −3𝛼

2. Static plane symmetric
black hole solutions in this theory were first given in [48]
(some detail work for the black hole can also be found in [49–
53]). Consider the following:

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+ 𝑓
−1

(𝑟) 𝑑𝑟
2
+ 𝑔 (𝑟) (𝑑𝑥

2
+ 𝑑𝑦
2
) . (3)

The metric functions are given by, respectively,

𝑓 (𝑟) = −
4𝜋𝑀

𝑁𝛼𝑁
𝑟
1−𝑁

+
6𝛼
2

𝑁(2𝑁 − 1)
𝑟
𝑁

+
2𝑄
2

𝑁𝛼2𝑁
𝑟
−𝑁

,

𝑔 (𝑟) = (𝑟𝛼)
𝑁
.

(4)

The dilaton field 𝜑 reads

𝜑 (𝑟) = −

√2𝑁 − 𝑁2

2
ln 𝑟. (5)

And the constant 𝑎 = 𝑏 = √2𝑁 − 𝑁2/𝑁. From (5), one easily
finds the parameter 𝑁 ∈ (1/2, 2). The scalar curvature of this
spacetime can be calculated as

𝑅 = 12𝛼
2
𝑟
𝑁−2

+

(2𝑁 − 𝑁
2
)

2𝑟2
𝑓 (𝑟) . (6)

Obviously, 𝑅 diverges at 𝑟 = 0 for any value of 𝑁, which
implies that 𝑟 = 0 plane is a singularity plane. From
Figure 1, we see that the scalar curvature 𝑅 is a monotonically
decreasing function of 𝑟 for different 𝑁. It is also clear that 𝑅
has a large value for small value of 𝑁 near 𝑟 = 0.

The parameters 𝑀 and 𝑄 are the mass and charge of the
black hole. The event horizon is located at 𝑓(𝑟

ℎ
) = 0 and the

radius 𝑟
ℎ
satisfies

3𝛼
2

2𝑁 − 1
𝑟
2𝑁

ℎ
−

2𝜋𝑀

𝛼𝑁
𝑟
ℎ
+

𝑄
2

𝛼2𝑁
= 0. (7)
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Figure 1:The behavior of scalar curvature𝑅with 𝛼 = √3/3,𝑄 = 10,
and𝑀 = 1. The full line, dashed line, and dashed-dotted line are for
𝑁 = 0.6, 1, and 1.8, respectively.

In general, there exist two horizons, the inner horizon and
the outer horizon. Under the extreme case, the two horizons
will merge into one. Here, we have denoted 𝑟

ℎ
as the radius

of outer horizon. The surface area of the outer horizon
corresponds to unit 𝑥-𝑦 plane is [52]. One may consider the
following:

A = (𝛼𝑟
ℎ
)
2𝑁

. (8)

From (7), the mass can be expressed in the form

𝑀 =
3𝛼
𝑁+2

2𝜋 (2𝑁 − 1)
𝑟
2𝑁−1

ℎ
+

𝑄
2

2𝜋𝛼𝑁
𝑟
−1

ℎ
. (9)

With the relation between area and entropy, that is, 𝑆 = A/4,
we can obtain

𝑟
ℎ

=
1

𝛼
(4𝑆)
1/2𝑁

. (10)

Substituting (10) into (9), the mass can be obtained as a
function of entropy 𝑆 and charge 𝑄 in the form

𝑀 =
3𝛼
3−𝑁

2𝜋 (2𝑁 − 1)
(4𝑆)
(2𝑁−1)/2𝑁

+
𝑄
2

2𝜋𝛼𝑁−1
(4𝑆)
−1/2𝑁

. (11)

From the energy conservation law of the black hole

𝑑𝑀 = 𝑇𝑑𝑆 + 𝜙𝑑𝑄, (12)

the relevant thermodynamic variables, the temperature, and
electric potential are obtained

𝑇 = (
𝜕𝑀

𝜕𝑆
)

𝑄

=

(12𝛼
2
𝑆 − 𝑄
2
) 𝛼
1−𝑁

22+1/𝑁𝜋𝑁𝑆1+1/2𝑁
,

𝜙 = (
𝜕𝑀

𝜕𝑄
)

𝑆

=
𝛼
1−𝑁

𝑄

21/𝑁𝜋𝑆1/2𝑁
.

(13)

For a given charge 𝑄, the heat capacity has the expression

𝐶
𝑄

= −

2𝑁𝑆 (12𝛼
2
𝑆 − 𝑄
2
)

12𝑆𝛼2 − (1 + 2𝑁)𝑄2
, (14)

with the zeropoints and singular points

𝑄
2
= 12𝛼

2
𝑆, (zero points), (15)

𝑄
2
=

12𝛼
2
𝑆

2𝑁 + 1
, (singular points), (16)

respectively. The heat capacity 𝐶
𝑄
goes to zero at 𝑄2 = 12𝛼

2
𝑆

continuously, which is considered to be the first-order phase
transition point. On other hand, it is generally believed that
the Davies’ points where the second-order phase transition
takes place correspond to the diverge points of heat capacity.
So the heat capacity 𝐶

𝑄
may indicate that the second-order

phase transition takes place at 𝑄
2

= 12𝛼
2
𝑆/(2𝑁 + 1).

The heat capacity also contains the information of the local
stability of the black hole thermodynamics. The negative
heat capacity always implies an unstable thermodynamics
system, and the positive one shows a stable system. Here,
we would like to give a brief discussion about the local
stability of the plane symmetric black hole. For 𝑄

2
> 12𝛼

2
𝑆,

the numerator of the heat capacity (14) is negative, while
the denominator is positive, which gives a negative heat
capacity. For 𝑄

2
< 12𝛼

2
𝑆/(2𝑁 + 1), the numerator is

positive, but the denominator turns to be negative, which also
shows a negative heat capacity. So, in both cases, the heat
capacity 𝐶

𝑄
implies an unstable black hole thermodynamics.

However, when |𝑄| ∈ (2√3𝛼√𝑆/(2𝑁 + 1), 2√3𝛼√𝑆), both
the numerator and denominator are positive, which implies
a stable black hole thermodynamics.The behavior of the heat
capacity 𝐶

𝑄
can be directly found from Figure 2. For larger

and smaller values of |𝑄|, the heat capacity 𝐶
𝑄
is negative.

While in the middle zone, it is positive, which means that
the black hole can be in stable thermal equilibrium with an
arbitrary volume heat bath. In summary, we have found that
there always exist locally thermodynamically stable phases
and unstable phases for the plane symmetric black hole due
to suitable parameter regimes.

3. Weinhold Geometry and Ruppeiner
Geometry of the Plane Symmetric Black
Hole

In this section, we would like to study the Weinhold and
Ruppeiner geometries of the plane symmetric black hole. In
the first step, we will calculate the Weinhold geometry. Then,
using the conformal relation, we could obtain the Ruppeiner
geometry naturally.TheWeinhold geometry is charactered by
the metric

𝑑𝑠
2

𝑊
=

𝜕
2
𝑀

𝜕𝑆2
𝑑𝑆
2
+ 2

𝜕
2
𝑀

𝜕𝑆𝜕𝑄
𝑑𝑆𝑑𝑄 +

𝜕
2
𝑀

𝜕𝑄2
𝑑𝑄
2
, (17)

where the index𝑊 denotes theWeinhold geometry. Here, the
thermodynamic potential is the mass 𝑀, and the entropy 𝑆

and charge 𝑄 are the extensive variables.
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Figure 2: The behavior of the heat capacity 𝐶
𝑄
, with 𝑁 = 1, 𝛼 =

√3/3, and 𝑆 = 100. 𝐶
𝑄
is singular at 𝑄 = ±11.5470 and vanishes at

𝑄 = ±20.

Using (11), the Weinhold metric can be obtained in the
form

𝑔
𝑊

= −
𝛼
1−𝑁

21/𝑁𝑆1/2𝑁
(

12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2

8𝜋𝑁2𝑆2

𝑄

2𝜋𝑁𝑆

𝑄

2𝜋𝑁𝑆
−

1

𝜋

) .

(18)

Its determinant is det(𝑔) = −𝛼
2−2𝑁

[12𝛼
2
𝑆 − (2𝑁 − 1)𝑄

2
]/

2
3+2/𝑁

𝑆
2+1/𝑁

𝜋
2
𝑁
2. Note that the determinant disappears as

the heat capacity vanishes only at𝑁 = 1. A simple calculation
shows that the Christoffel symbols are

Γ
𝑆

𝑆𝑆
= −

(2𝑁 + 1) [12𝛼
2
𝑆 − (4𝑁 − 1)𝑄

2
]

4𝑁𝑆 [12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
,

Γ
𝑆

𝑄𝑆
= Γ
𝑆

𝑆𝑄
= −

2𝑁𝑄

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

Γ
𝑆

𝑄𝑄
= −

2𝑁𝑆

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

Γ
𝑄

𝑆𝑆
= −

(2𝑁 + 1)𝑄
3

4𝑁𝑆2 [12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
,

Γ
𝑄

𝑆𝑄
= Γ
𝑄

𝑄𝑆
= −

12𝛼
2
𝑆 + (2𝑁 + 1)𝑄

2

4𝑆 [12𝑁𝛼2𝑆 − 𝑁 (2𝑁 − 1)𝑄2]
,

Γ
𝑄

𝑄𝑄
=

𝑄

12𝛼2𝑆 − (2𝑁 − 1)𝑄2
,

(19)

where the Christoffel symbols are calculated with

Γ
𝜆

𝜇] =
1

2
𝑔
𝜆𝜏

(𝑔]𝜏,𝜇 + 𝑔
𝜇𝜏,] − 𝑔

𝜇],𝜏) . (20)

The Riemannian curvature tensor, Ricc curvature, and scalar
curvature are given, respectively,

𝑅
𝜇

𝜎]𝜏 = Γ
𝜇

𝜎],𝜏 − Γ
𝜇

𝜎𝜏,] + Γ
𝜇

𝜆,𝜏
Γ
𝜆

𝜎,] − Γ
𝜇

𝜆,]
Γ
𝜆

𝜎,𝜏
,

𝑅
𝜇] = 𝑅

𝜆

𝜇𝜆],

𝑅 = 𝑔
𝜇]

𝑅
𝜇].

(21)

With (21), we get the scalar curvature

R
𝑊

= −
24 2
1/𝑁

𝑁𝜋𝑆
1+1/2𝑁

𝛼
1+𝑁

[12𝛼2𝑆 − (2𝑁 − 1)𝑄2]
2
. (22)

This curvature is always negative for any values of charge 𝑄

and positive entropy 𝑆. It also diverges at 𝑄2 = 12𝛼
2
𝑆/(2𝑁 +

1), which consists with the first-order transition points (15)
reproduced from the capacity 𝐶

𝑄
only at 𝑁 = 1. Its behavior

can be seen in Figure 3. However, it implies no information
about the second-order phase transition. So, it is natural to
ask how the Ruppeiner curvature behaves. Could it give the
proper phase transition points?

With that question, we now turn to the Ruppeiner
geometry of the plane symmetric black hole. Recalling the
conformal relation (1) between the Ruppeiner geometry and
the Weinhold geometry, we obtain the Ruppeiner metric

𝑔
𝑅

=
1

𝑇
𝑔
𝑊

= (

−
12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2

2𝑁𝑆 (12𝛼2𝑆 − 𝑄2)
−

2𝑄

12𝛼2𝑆 − 𝑄2

−
2𝑄

12𝛼2𝑆 − 𝑄2
−

4𝑁𝑆

12𝛼2𝑆 − 𝑄2

),

(23)

where the index 𝑅 denotes the Ruppeiner geometry. After
some calculations, we obtain the Ruppeiner curvature

R
𝑅

= −

12𝛼
2
𝑄
2
(𝑁 − 1) [36𝑆𝛼

2
− (4𝑁 − 1)𝑄

2
]

(12𝛼2𝑆 − 𝑄2) [12𝑆𝛼2 − (2𝑁 − 1)𝑄2]
2

. (24)

It is obvious that the curvature will be zero at 𝑁 = 1.
The vanished thermodynamic curvature R

𝑅
implies that

there exist no phase transition points and no thermodynamic
interactions. So, the Ruppeiner curvature is not proper to
describe the phase transitions of the plane symmetric black
hole at 𝑁 = 1. The divergence of the Ruppeiner curvature
is at 𝑄

2
= 12𝛼

2
𝑆/(2𝑁 + 1) and 𝑄

2
= 12𝛼

2
𝑆, which can

be seen from Figure 4. The points 𝑄
2

= 12𝛼
2
𝑆 consist with

the zero-points (15) of the heat capacity 𝐶
𝑄
. This means

that the Ruppeiner curvature always implies the first-order
phase transition points. Like the Weinhold curvature, the
Ruppeiner curvature also implies no any information about
the second-order phase transition.

4. Unified Geometry of the Plane Symmetric
Black Hole

In the previous section, we show that theWeinhold curvature
implies the first-order phase transition points only at 𝑁 = 1,
while the Ruppeiner curvature implies the first-order phase
transition points except 𝑁 = 1. Both of the geometry
structures gave no information about the second-order phase
transition points of the plane symmetric black hole. Quevedo
pointed out that the two geometries are not Legendre
invariants, which makes them inappropriate to describe the
geometry of thermodynamic systems [34]. Considering the
Legendre invariant, a unified geometry was presented in
[35], where the metric structure can give a good description
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with 𝑁 = 1, 𝛼 = √3/3, and 𝑆 = 100. The divergence points are at
𝑄 = ±20.
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Figure 4: The negative Ruppeiner curvature R
𝑅
versus the charge

𝑄 with 𝑁 = 3/2, 𝛼 = √3/3, and 𝑆 = 100. The divergence points are
at 𝑄 = ±20, ±14.1421.

of various types of black hole thermodynamics. So, in this
section, we would like to discuss the unified geometry of the
plane symmetric black hole, and we want to know whether it
works.

Here, we still take the mass 𝑀 as the thermodynamic
potential.Then the unified geometry metric can be expressed
as

𝑑𝑠
2

𝐿
= (𝑆

𝜕𝑀

𝜕𝑆
+ 𝑄

𝜕𝑀

𝜕𝑄
)(

−
𝜕
2
𝑀

𝜕𝑆2
0

0
𝜕
2
𝑀

𝜕𝑄2

)(
𝑑𝑆
2

𝑑𝑄
2)

=

𝛼
2−2𝑁

[12𝛼
2
𝑆 − (2𝑁 + 1)𝑄

2
] [12𝛼

2
𝑆 + (4𝑁 − 1)𝑄

2
]

25+2/𝑁𝜋2𝑁3𝑆2+1/𝑁

× 𝑑𝑆
2
+

𝛼
2−2𝑁

(12𝛼
2
𝑆 + (4𝑁 − 1)𝑄

2
)

22(𝑁+1)/𝑁𝜋2𝑁𝑆1/N
𝑑𝑄
2
.

(25)

The index 𝐿 denotes the curvature reproduced from the
Legendre invariant metric.

5 10 15

10000

20000

30000

40000

50000

−5−10−15

Q

−
ℛ

L

Figure 5: The negative unified geometric curvature R
𝐿
versus the

charge𝑄with𝑁 = 1, 𝛼 = √3/3, and 𝑆 = 100. The divergence points
are at𝑄 = ±11.5470, which are consistent with the divergence points
of the heat capacity 𝐶

𝑄
. The positive curvature region is at |𝑄| ≥ 20

and it is not shown in this figure.

This diagonal metric reproduces the thermodynamic
curvatureR

𝐿
, which turns out to be non-zero and the scalar

curvature is

R
𝐿

=
192 4

1/𝑁
𝜋
2
𝛼
2𝑁

𝑁𝑆
1+1/𝑁

[12𝛼2𝑆 − (2𝑁 + 1)𝑄2]
2

[12𝛼2𝑆 + (4𝑁 − 1)𝑄2]
3

⋅ {(4𝑁 − 1)𝑄
2
[(𝑁 (4𝑁

2
− 6𝑁 − 3) − 1)𝑄

2

− 12 ((𝑁 − 5)𝑁 − 2) 𝛼
2
𝑆]

+ 144(𝑁 − 1)
2
𝛼
4
𝑆
2
} .

(26)

The thermodynamic curvature vanishes at 𝑄
2

= 12𝑆𝛼
2

when 𝑁 = 1, which are just the points of the first-order
phase transition. It is shown that the diverge points are
at 𝑄
2

= 12𝛼
2
𝑆/(2𝑁 + 1), which implies that there exist

second-order phase transitions at these points. This result
exactly consists with that of the heat capacity (14). The
detail behavior of R

𝐿
can be found in Figure 5, where the

singularities are just the divergence points of the heat capacity
𝐶
𝑄
. Now, we can see that the thermodynamic curvature

R
𝐿
reproduced from the Legendre invariant metric (25)

could give an exact description of the second-order phase
transitions of a thermodynamics system. Beside this, we also
expect that this unified geometry description may give more
information about a thermodynamics system.

5. Unified Geometry beyond
Semiclassical Approximation

In this section, we will discuss the unified geometry of the
plane symmetric black hole beyond semiclassical approxi-
mation. With the idea, each quantity of the black hole will
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Figure 6:The negative unified geometric curvatureR
𝐿
versus the charge𝑄, including the logarithmic correction with𝑁 = 1, 𝛼 = √3/3, and

𝑆 = 100. The parameter 𝛾 is set to 1/2 (left), 5/6 (middle), and 3/2 (right), respectively. The divergence points are at𝑄 = ±11.3756, ±11.2613,
and ±11.0326.

be modified accordingly. For general, we suppose that the
corrected entropy is of the form

𝑆

= 𝑆 − 𝛾 ln 𝑆. (27)

The parameter 𝛾 is a constant. In fact, the origin of the
logarithmic correction term can be accounted by the uncer-
tainty principle or the tunneling method. With (27), the heat
capacity (14) is also modified to

𝐶


𝑄
=

2𝑁𝑆 (𝑆 − 𝛾) (𝑆 − 𝛾 ln 𝑆) (12𝑆𝛼
2
− 𝑄
2
− 12𝛼

2
𝛾 ln 𝑆)

𝐴
2
𝑄2 − 𝐴

1

,

(28)

with

𝐴
1
= 12𝛼

2
(𝑆 − 𝛾 ln 𝑆) [(1 + 2𝑁 ln 𝑆) 𝛾

2
− 2 (𝑁+1) 𝑆𝛾+𝑆

2
] ,

𝐴
2
=[2𝑁 (1+ln 𝑆)+1] 𝛾

2
−2 (3𝑁+1) 𝑆𝛾 + (2𝑁+1) 𝑆

2
.

(29)

The singular points of the heat capacity are determined by
𝐴
2
𝑄
2
− 𝐴
1
= 0 and are given by

𝑄
2
=

𝐴
1

𝐴
2

. (30)

If 𝛾 = 0, the singular points of the heat capacity will reduce to
(14). Following Section 4, we obtain the curvatureR

𝐿
:

R


𝐿
=

ℎ (𝑆, 𝑄,𝑁, 𝛾)

𝐾3(𝐴
2
𝑄2 − 𝐴

1
)
2
, (31)

where𝐾 = [4𝑁(𝑆 − 𝛾 ln 𝑆) + 𝛾 − 𝑆]𝑄
2
+ 12𝛼

2
(𝑆 − 𝛾)(𝑆−𝛾 ln 𝑆)

and ℎ(𝑆, 𝑄,𝑁, 𝛾) is a complex function and we do not write
it here. It is found that the divergence points for the heat
capacity 𝐶



𝑄
and the curvature R

𝐿
consist with each other,

which means that the curvature gives proper points, where
second-order phase transitions take place. So, it is easy to
summarize that the logarithmic correction term does not
affect the unified geometry to depict the plane symmetry
black hole’s phase transitions.

Now, we would like to discuss how the geometry behaved
as the parameter 𝛾 takes different values. For simplicity, we
turn back to the case 𝑁 = 1. The Legendre invariant metric
for this case is

𝑔
𝐿

= (

−
𝐵𝐶

128𝜋2𝑆2(𝑆 − 𝛾 ln 𝑆)
4

0

0
𝐵

16𝜋2𝑆2(𝑆 − 𝛾 ln 𝑆)
2

),

(32)

where 𝐵 = 𝐾|
𝑁=1

and 𝐶 = (𝐴
2
𝑄
2

− 𝐴
1
)|
𝑁=1

. After
some tedious calculations, we can obtain the curvature. The
numerator of the curvature is a cumbersome expression and
can not be written in a compact form.While the denominator
of it is proportional to the determinant of the metric (32) and
is given by

𝐷 = 𝐵
3
⋅ 𝐶
2
. (33)

Fixing the parameters 𝛼 and entropy 𝑆, the characteristic
behavior of the curvature is depicted in Figure 6, where the
parameter 𝛾 is set to 1/2, 5/6 and 3/2, respectively.The values
of the charge 𝑄 at the divergence points of the curvatureR

𝐿

are given as

𝑄 = ±2√3𝛼√
(𝑆 − 𝛾 ln 𝑆) [(1 + 2 ln 𝑆) 𝛾

2
− 4𝑆𝛾 + 𝑆

2
]

[2 (1 + ln 𝑆) + 1] 𝛾2 − 8𝑆𝛾 + 3𝑆2
. (34)

When Δ = 3 − 2 ln 𝑆 ≥ 0, there are three points of 𝛾 for the
vanished charge 𝑄:

𝛾
1
=

𝑆

ln 𝑆
, 𝛾

±
=

2 ± √3 − 2 ln 𝑆

1 + 2 ln 𝑆
𝑆. (35)

In general, we consider 𝑆 ≫ 1, which leads to Δ < 0. So, the
vanished charge 𝑄 is only at 𝛾 = 𝛾

1
.

6. Conclusion

In this paper, we study the phase transitions and geome-
try structure of the plane symmetry black hole. The local
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thermodynamic stability of it is also discussed through
the heat capacity 𝐶

𝑄
. It is shown that there always exist

locally thermodynamically stable phases and unstable phases
for plane symmetric black hole due to suitable parame-
ter regimes. The Weinhold geometry and the Ruppeiner
geometry are obtained. The Weinhold curvature gives phase
transition points, which correspond to that of the first-
order phase transition only at 𝑁 = 1, while the Ruppeiner
one shows first-order phase transition points for arbitrary
𝑁 ̸= 1. Both of which give no information about the second-
order phase transition. Quevedo et al. first pointed out
that the two geometry metrics are not Legendre invariant
and they introduced a Legendre invariant metric, which
can give a good description of various types of black hole
thermodynamics. Considering the Legendre invariant, we
obtain a unified geometry metric, which gives a correct
behavior of the thermodynamic interaction and second-
order phase transition. Including the logarithmic corrected
term, we study the geometry structure of the plane symmetry
black hole. The result shows that the logarithmic correction
term does not affect the unified geometry to depict the phase
transitions. In this paper, we show that the unified geometry
description gives a good description of the second-order
phase transitions of the plane symmetry black hole. We also
expect that this unified geometry description may give more
information about a thermodynamic system.
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