275 research outputs found

    Result Publication of Chinese Trials in World Health Organization Primary Registries

    Get PDF
    Result publication is the key step to improve the transparency of clinical trials.To investigate the result publication rate of Chinese trials registered in World Health Organization (WHO) primary registries.We searched 11 WHO primary registries for Chinese trials records. The progress of each trial was analyzed. We searched for the full texts of result publications cited in the registration records. For completed trials without citations, we searched PubMed, Embase, Chinese Biomedical Literature Database (Chinese), China Knowledge Resource Integrated Database, and Chinese Science and Technology Periodicals Database for result publications. The search was conducted on July 14, 2009. We also called the investigators of completed trials to ask about results publication.We identified 1294 Chinese trials records (428 in ChiCTR,743 in clinicaltrials.gov,55 in ISRCTN, 21 in ACTRN). A total of 443 trials had been completed. The publication rate of the Chinese trials in WHO primary registries is 35.2%(156/443).The publication rate of Chinese trials in clinicaltrials.gov, ChiCTR, ISRCTN, and ACRTN was 36.5% (53/145), 36.3% (89/245), 26.0%(9/44), and 55.6%(5/9), respectively. The publication rate of trials sponsored by industry(23.8%) was lower than that of sponsored by central and local government(31.7%), hospital(35.1%), and universities (40.7%). The publication rate for randomized trials was higher than that of cohort study and case-control study (33.2% versus 16.7%, 22.2%). The publication rate for interventional studies and observational studies was similar(33.4% versus 33.3%).The publication rate of the registered Chinese trials was low, with no significant difference between ChiCTR and clinicaltrials.gov. An effective mechanism is needed to promote publication of results for registered trials in China

    Culture and capture of fish in Chinese reservoirs

    Get PDF
    Published in Malaysia by Southbound Sdn. Bhd.Translated from the Chines

    Application of CFD, Taguchi Method, and ANOVA Technique to Optimize Combustion and Emissions in a Light Duty Diesel Engine

    Get PDF
    Some previous research results have shown that EGR (exhaust gas recirculation) rate, pilot fuel quantity, and main injection timing closely associated with engine emissions and fuel consumption. In order to understand the combined effect of EGR rate, pilot fuel quantity, and main injection timing on the NOx (oxides of nitrogen), soot, and ISFC (indicated specific fuel consumption), in this study, CFD (computational fluid dynamics) simulation together with the Taguchi method and the ANOVA (analysis of variance) technique was applied as an effective research tool. At first, simulation model on combustion and emissions of a light duty diesel engine at original baseline condition was developed and the model was validated by test. At last, a confirmation experiment with the best combination of factors and levels was implemented. The study results indicated that EGR is the most influencing factor on NOx. In case of soot emission and ISFC, the greatest influence parameter is main injection timing. For all objectives, pilot fuel quantity is an insignificant factor. Furthermore, the engine with optimized combination reduces by at least 70% for NOx, 20% in soot formation, and 1% for ISFC, in contrast to original baseline engine

    A Coumarin–Hemicyanine Deep Red Dye with a Large Stokes Shift for the Fluorescence Detection and Naked-Eye Recognition of Cyanide

    Get PDF
    In this study, we synthesized a coumarin–hemicyanine-based deep red fluorescent dye that exhibits an intramolecular charge transfer (ICT). The probe had a large Stokes shift of 287 nm and a large molar absorption coefficient (ε = 7.5 × 105 L·mol−1·cm−1) and is best described as a deep red luminescent fluorescent probe with λem = 667 nm. The color of probe W changed significantly when it encountered cyanide ions (CN−). The absorption peak (585 nm) decreased gradually, and the absorption peak (428 nm) increased gradually, so that cyanide (CN−) could be identified by the naked eye. Moreover, an obvious fluorescence change was evident before and after the reaction under irradiation using 365 nm UV light. The maximum emission peak (667 nm) decreased gradually, whilst the emission peak (495 nm) increased gradually, which allowed for the proportional fluorescence detection of cyanide (CN−). Using fluorescence spectrometry, the fluorescent probe W could linearly detect CN− over the concentration range of 1–9 μM (R2 = 9913, RSD = 0.534) with a detection limit of 0.24 μM. Using UV-Vis spectrophotometry, the linear detection range for CN− was found to be 1–27 μM (R2 = 0.99583, RSD = 0.675) with a detection limit of 0.13 μM. The sensing mechanism was confirmed by 1H NMR spectroscopic titrations, 13C NMR spectroscopy, X-ray crystallographic analysis and HRMS. The recognition and detection of CN− by probe W was characterized by a rapid response, high selectivity, and high sensitivity. Therefore, this probe provides a convenient, effective and economical method for synthesizing and detecting cyanide efficiently and sensitively

    The E3 Ubiquitin Ligase AMFR and INSIG1 Bridge the Activation of TBK1 Kinase by Modifying the Adaptor STING

    Get PDF
    SummaryStimulator of interferon genes (STING, also known as MITA, ERIS, or MPYS) is essential for host immune responses triggered by microbial DNAs. However, the regulatory mechanisms underlying STING-mediated signaling are not fully understood. We report here that, upon cytoplasmic DNA stimulation, the endoplasmic reticulum (ER) protein AMFR was recruited to and interacted with STING in an insulin-induced gene 1 (INSIG1)-dependent manner. AMFR and INSIG1, an E3 ubiquitin ligase complex, then catalyzed the K27-linked polyubiquitination of STING. This modification served as an anchoring platform for recruiting TANK-binding kinase 1 (TBK1) and facilitating its translocation to the perinuclear microsomes. Depletion of AMFR or INSIG1 impaired STING-mediated antiviral gene induction. Consistently, myeloid-cell-specific Insig1−/− mice were more susceptible to herpes simplex virus 1 (HSV-1) infection than wild-type mice. This study uncovers an essential role of the ER proteins AMFR and INSIG1 in innate immunity, revealing an important missing link in the STING signaling pathway

    The nuclear receptor LXRα controls the functional specialization of splenic macrophages.

    Get PDF
    Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets

    Fe(II) addition drives soil bacterial co-ocurrence patterns and functions mediated by anaerobic and chemoautotrophic taxa

    Get PDF
    Iron is among the most abundant elements in the soil of paddy fields, and its valence state and partitioning can be transformed by flooding and drainage alternations. However, little is known about the function of soil microbes that interact with Fe(II). In this study, sandy and loamy soils originating from rice fields were treated with Fe(II) at low and high concentrations. The findings demonstrate that additional Fe(II) has various effects on the soil’s microbial community structure and metabolic pathways. We conclude that Fe(II) at high concentrations reduced bacterial abundance and diversity in two textured paddy soils, yet the abundance in loamy soils was higher than it was in sandy soil. Additionally, in environments with high Fe(II) levels, the relative abundance of both anaerobic and chemoautotrophic bacteria increased. The Fe(II) concentration was positively correlated with total reduced substances but negatively correlated with redox potential and pH. Co-occurrence networks revealed that Fe(II) significantly promoted interactions with the most anaerobic and chemoautotrophic bacteria. In addition, adding Fe(II) greatly increased the number of more complex bacterial networks, and an increase in the number of mutually beneficial taxa occurred. We found that Fe(II) promoted the methane pathway, the Calvin cycle, and nitrate reduction to small but significant extents. These pathways involve the growth and interrelation of autotrophic and anaerobic bacteria. These results suggest that changes in the bacterial community structure occur in many dry−wet alternating environments
    • …
    corecore