14 research outputs found

    Learning to Dehaze from Realistic Scene with A Fast Physics-based Dehazing Network

    Full text link
    Dehazing is a popular computer vision topic for long. A real-time dehazing method with reliable performance is highly desired for many applications such as autonomous driving. While recent learning-based methods require datasets containing pairs of hazy images and clean ground truth references, it is generally impossible to capture accurate ground truth in real scenes. Many existing works compromise this difficulty to generate hazy images by rendering the haze from depth on common RGBD datasets using the haze imaging model. However, there is still a gap between the synthetic datasets and real hazy images as large datasets with high-quality depth are mostly indoor and depth maps for outdoor are imprecise. In this paper, we complement the existing datasets with a new, large, and diverse dehazing dataset containing real outdoor scenes from High-Definition (HD) 3D movies. We select a large number of high-quality frames of real outdoor scenes and render haze on them using depth from stereo. Our dataset is more realistic than existing ones and we demonstrate that using this dataset greatly improves the dehazing performance on real scenes. In addition to the dataset, we also propose a light and reliable dehazing network inspired by the physics model. Our approach outperforms other methods by a large margin and becomes the new state-of-the-art method. Moreover, the light-weight design of the network enables our method to run at a real-time speed, which is much faster than other baseline methods

    Estimating Reflectance Layer from A Single Image: Integrating Reflectance Guidance and Shadow/Specular Aware Learning

    Full text link
    Estimating reflectance layer from a single image is a challenging task. It becomes more challenging when the input image contains shadows or specular highlights, which often render an inaccurate estimate of the reflectance layer. Therefore, we propose a two-stage learning method, including reflectance guidance and a Shadow/Specular-Aware (S-Aware) network to tackle the problem. In the first stage, an initial reflectance layer free from shadows and specularities is obtained with the constraint of novel losses that are guided by prior-based shadow-free and specular-free images. To further enforce the reflectance layer to be independent from shadows and specularities in the second-stage refinement, we introduce an S-Aware network that distinguishes the reflectance image from the input image. Our network employs a classifier to categorize shadow/shadow-free, specular/specular-free classes, enabling the activation features to function as attention maps that focus on shadow/specular regions. Our quantitative and qualitative evaluations show that our method outperforms the state-of-the-art methods in the reflectance layer estimation that is free from shadows and specularities.Comment: Accepted to AAAI202

    Beyond Supervised Classification: Extreme Minimal Supervision with the Graph 1-Laplacian

    Get PDF
    We consider the task of classifying when an extremely reduced amount of labelled data is available. This problem is of a great interest, in several real-world problems, as obtaining large amounts of labelled data is expensive and time consuming. We present a novel semi-supervised framework for multi-class classification that is based on the normalised and non-smooth graph 1-Laplacian. Our transductive framework is framed under a novel functional with carefully selected class priors - that enforces a sufficiently smooth solution that strengthens the intrinsic relation between the labelled and unlabelled data. We demonstrate through extensive experimental results on large datasets CIFAR-10 and ChestX-ray14, that our method outperforms classic methods and readily competes with recent deep-learning approaches

    AdAM: Few-Shot Image Generation via Adaptation-Aware Kernel Modulation

    Full text link
    Few-shot image generation (FSIG) aims to learn to generate new and diverse images given few (e.g., 10) training samples. Recent work has addressed FSIG by leveraging a GAN pre-trained on a large-scale source domain and adapting it to the target domain with few target samples. Central to recent FSIG methods are knowledge preservation criteria, which select and preserve a subset of source knowledge to the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/task and fail to consider target domain/adaptation in selecting source knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. Firstly, we revisit recent FSIG works and their experiments. We reveal that under setups which assumption of close proximity between source and target domains is relaxed, many existing state-of-the-art (SOTA) methods which consider only source domain in knowledge preserving perform no better than a baseline method. As our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) for general FSIG of different source-target domain proximity. Extensive experiments show that AdAM consistently achieves SOTA performance in FSIG, including challenging setups where source and target domains are more apart.Comment: 33 pages, 35 figures, 13 tables. Extension of NeurIPS-2022 paper arXiv:2210.1655

    Deep Reflection Prior

    Full text link
    Reflections are very common phenomena in our daily photography, which distract people's attention from the scene behind the glass. The problem of removing reflection artifacts is important but challenging due to its ill-posed nature. Recent learning-based approaches have demonstrated a significant improvement in removing reflections. However, these methods are limited as they require a large number of synthetic reflection/clean image pairs for supervision, at the risk of overfitting in the synthetic image domain. In this paper, we propose a learning-based approach that captures the reflection statistical prior for single image reflection removal. Our algorithm is driven by optimizing the target with joint constraints enhanced between multiple input images during the training stage, but is able to eliminate reflections only from a single input for evaluation. Our framework allows to predict both background and reflection via a one-branch deep neural network, which is implemented by the controllable latent code that indicates either the background or reflection output. We demonstrate superior performance over the state-of-the-art methods on a large range of real-world images. We further provide insightful analysis behind the learned latent code, which may inspire more future work

    VISIBILITY ENCHANCEMENT AND OPTICAL FLOW ESTIMATION UNDER ADVERSE WEATHER CONDITIONS

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOE

    Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning

    No full text
    Most deraining works focus on rain streaks removal but they cannot deal adequately with heavy rain images. In heavy rain, streaks are strongly visible, dense rain accumulation or rain veiling effect significantly washes out the image, further scenes are relatively more blurry, etc. In this paper, we propose a novel method to address these problems. We put forth a 2-stage network: a physics-based backbone followed by a depth-guided GAN refinement. The first stage estimates the rain streaks, the transmission, and the atmospheric light governed by the underlying physics. To tease out these components more reliably, a guided filtering framework is used to decompose the image into its low- and high-frequency components. This filtering is guided by a rain-free residue image --- its content is used to set the passbands for the two channels in a spatially-variant manner so that the background details do not get mixed up with the rain-streaks. For the second stage, the refinement stage, we put forth a depth-guided GAN to recover the background details failed to be retrieved by the first stage, as well as correcting artefacts introduced by that stage. We have evaluated our method against the state of the art methods. Extensive experiments show that our method outperforms them on real rain image data, recovering visually clean images with good details.Comment: CVPR1
    corecore