13,497 research outputs found

    The Swr1 chromatin-remodeling complex prevents genome instability induced by replication fork progression defects.

    Get PDF
    Genome instability is associated with tumorigenesis. Here, we identify a role for the histone Htz1, which is deposited by the Swr1 chromatin-remodeling complex (SWR-C), in preventing genome instability in the absence of the replication fork/replication checkpoint proteins Mrc1, Csm3, or Tof1. When combined with deletion of SWR1 or HTZ1, deletion of MRC1, CSM3, or TOF1 or a replication-defective mrc1 mutation causes synergistic increases in gross chromosomal rearrangement (GCR) rates, accumulation of a broad spectrum of GCRs, and hypersensitivity to replication stress. The double mutants have severe replication defects and accumulate aberrant replication intermediates. None of the individual mutations cause large increases in GCR rates; however, defects in MRC1, CSM3 or TOF1 cause activation of the DNA damage checkpoint and replication defects. We propose a model in which Htz1 deposition and retention in chromatin prevents transiently stalled replication forks that occur in mrc1, tof1, or csm3 mutants from being converted to DNA double-strand breaks that trigger genome instability

    Optimal Research for Cournot Oligopolists

    Get PDF
    We extend the classical Cournot model to take account of uncertainty in either the cost function or the demand function. By undertaking research, firms can acquire private (asymmetric) information to help resolve their uncertainty and make a more informed production decision. The model is a two stage game: in the first stage research levels are chosen, and in the second stage, conditional on private research outcomes, production decisions are made. We find that for a linear, continuous information structure there is a unique Nash equilibrium to the game. In the equilibrium there may be an inefficient amount of aggregate research and there may be incomplete pooling as well. The model specializes to the classical case when the cost of research is zero (and each firm gains essentially the same information by doing an infinite amount of research) or when the cost of research is so high no firm undertakes research

    Subcellular organization of UBE3A in human cerebral cortex.

    Get PDF
    BackgroundLoss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A's localization is integral to its function.MethodsWe used light and electron microscopic immunohistochemistry to study the cellular and subcellular distribution of UBE3A in the adult human cerebral cortex. Experiments were performed on multiple tissue sources, but our results focused on optimally preserved material, using surgically resected human temporal cortex of high ultrastructural quality from nine individuals.ResultsWe demonstrate that UBE3A is expressed in both glutamatergic and GABAergic neurons, and to a lesser extent in glial cells. We find that UBE3A in neurons has a non-uniform subcellular distribution. In somata, UBE3A preferentially concentrates in euchromatin-rich domains within the nucleus. Electron microscopy reveals that labeling concentrates in the head and neck of dendritic spines and is excluded from the PSD. Strongest labeling within the neuropil was found in axon terminals.ConclusionsBy highlighting the subcellular compartments in which UBE3A is likely to function in the human neocortex, our data provide insight into the diverse functional capacities of this E3 ligase. These anatomical data may help to elucidate the role of UBE3A in Angelman syndrome and autism spectrum disorder
    corecore