57 research outputs found

    Non-invasive Amide Proton Transfer Imaging and ZOOM Diffusion-Weighted Imaging in Differentiating Benign and Malignant Thyroid Micronodules

    Get PDF
    Background: Pre-operative non-invasive differentiation of benign and malignant thyroid nodules is difficult for doctors. This study aims to determine whether amide proton transfer (APT) imaging and zonally oblique multi-slice (ZOOM) diffusion-weighted imaging (DWI) can provide increased accuracy in differentiating benign and malignant thyroid nodules.Methods: This retrospective study was approved by the institutional review board and included 60 thyroid nodules in 50 patients. All of the nodules were classified as malignant (n = 21) or benign (n = 39) based on pathology. It was meaningful to analyze the APT and apparent diffusion coefficient (ADC) values of the two groups by independent t-test to identify the benign and malignant thyroid nodules. The relationship between APT and ZOOM DWI was explored through Pearson correlation analysis. The diagnostic efficacy of APT and ZOOM DWI in determining if thyroid nodules were benign or malignant was compared using receiver operating characteristic (ROC) curve analysis.Results: The mean APTw value of the benign nodules was 2.99 ± 0.79, while that of the malignant nodules was 2.14 ± 0.73. Additionally, there was a significant difference in the APTw values of the two groups (P < 0.05). The mean ADC value of the benign nodules was 1.84 ± 0.41, and was significantly different from that of the malignant nodules, which was 1.21 ± 0.19 (P < 0.05). Scatter point and Pearson test showed a moderate positive correlation between the APT and ADC values (P < 0.05). The ROC curve showed that the area under the curve (AUC) value of ZOOM DWI (AUC = 0.937) was greater than that of APT (AUC = 0.783) (P = 0.028).Conclusion: APT and ZOOM DWI imaging improved the accuracy of distinguishing between benign and malignant thyroid nodules. ZOOM DWI is superior to APTw imaging (Z = 2.198, P < 0.05)

    Workability study of sand-bentonite-cement mixtures for construction of two-phase cut-off wall

    No full text
    The workability of fresh materials is critical for sand-bentonite-cement cut-off wall; however, previous studies are limited to the one-phase construction method, not the two-phase. Hence, this study attempts to fill the gap. First, series of flowability and bleeding tests on sand-bentonite mixtures were conducted (1st phase); subsequently, cement slurry was added to mixtures (2nd phase) to investigate its effect on the workability. The results indicated that, for sand-bentonite mixtures with required workability for 1st phase of construction, the addition of cement caused significant increase in flowability and bleeding, i.e. reducing the workability for 2nd phase, especially for sodium bentonite. The reason was revealed as the short-term interactions (mainly cation exchange) between bentonite and cement hydration products, reducing water retention capacity and swelling potential of bentonite.Ministry of Education (MOE)This research is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP50220-0004)

    Computation and Verification of Spatial Rate Equations for an Electro-Optically Q-Switched Laser-Diode Side-Pumped Nd:YAG Laser

    No full text
    In a side-pumped laser module, we simulate the pumping power distribution across the cross-section of Nd:YAG rods at varying diameters. The coupled rate equations with the spatial overlap efficiency for a four-level actively Q-switched side-pumped laser are considered complete. After a Q-switched pulse terminates, the expressions of laser output parameters are derived. We assess the single pulse energy, pulse width, and peak power using the analysis function. The 200 Hz Q-switched side-pumped Nd:YAG laser with a peak power of 103 kW and beam quality factors M2 = 1.67 is developed to the validity of theoretical models

    Defect identification of bare printed circuit boards based on Bayesian fusion of multi-scale features

    No full text
    The aim of this article is to propose a defect identification method for bare printed circuit boards (PCB) based on multi-feature fusion. This article establishes a description method for various features of grayscale, texture, and deep semantics of bare PCB images. First, the multi-scale directional projection feature, the multi-scale grey scale co-occurrence matrix feature, and the multi-scale gradient directional information entropy feature of PCB were extracted to build the shallow features of defect images. Then, based on migration learning, the feature extraction network of the pre-trained Visual Geometry Group16 (VGG-16) convolutional neural network model was used to extract the deep semantic feature of the bare PCB images. A multi-feature fusion method based on principal component analysis and Bayesian theory was established. The shallow image feature was then fused with the deep semantic feature, which improved the ability of feature vectors to characterize defects. Finally, the feature vectors were input as feature sequences to support vector machines for training, which completed the classification and recognition of bare PCB defects. Experimental results show that the algorithm integrating deep features and multi-scale shallow features had a high recognition rate for bare PCB defects, with an accuracy rate of over 99%

    Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks.

    No full text
    Apple trees grafted on different rootstock types, including vigorous rootstock (VR), dwarfing interstock (DIR), and dwarfing self-rootstock (DSR), are widely planted in production, but the molecular determinants of tree branch architecture growth regulation induced by rootstocks are still not well known. In this study, the branch growth phenotypes of three combinations of 'Fuji' apple trees grafted on different rootstocks (VR: Malus baccata; DIR: Malus baccata/T337; DSR: T337) were investigated. The VR trees presented the biggest branch architecture. The results showed that the sugar content, sugar metabolism-related enzyme activities, and hormone content all presented obvious differences in the tender leaves and buds of apple trees grafted on these rootstocks. Transcriptomic profiles of the tender leaves adjacent to the top buds allowed us to identify genes that were potentially involved in signaling pathways that mediate the regulatory mechanisms underlying growth differences. In total, 3610 differentially expressed genes (DEGs) were identified through pairwise comparisons. The screened data suggested that sugar metabolism-related genes and complex hormone regulatory networks involved the auxin (IAA), cytokinin (CK), abscisic acid (ABA) and gibberellic acid (GA) pathways, as well as several transcription factors, participated in the complicated growth induction process. Overall, this study provides a framework for analysis of the molecular mechanisms underlying differential tree branch growth of apple trees grafted on different rootstocks

    Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration

    No full text
    Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration
    corecore