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Abstract: Laser performances around 1.3 μm are investigated in 879 nm laser diode (LD) end 
pumped Nd3+ doped mixed crystals with Nd:Gd0.69Y0.3TaO4 and Nd:Gd0.68Y0.3NbO4 crystals 
for the first time to our best knowledge. The maximum average power in LD end pumped 
Nd:Gd0.69Y0.3TaO4 1328 nm laser reaches 435 mW at 50 Hz with an optical-to-optical 
efficiency of 5.0% and a slope efficiency of 6.9%. In comparison, the highest average power 
of LD end pumped Nd:Gd0.68Y0.3NbO4 laser at 1337 nm is 190 mW at 50 Hz, corresponding 
to an optical-to-optical efficiency of 3.5% and a slope efficiency of 4.2%. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Laser sources at 1.3 μm are widely used in many fields including telecommunication systems, 
remote sensing, and fiber sensing [1–3]. By nonlinear conversion, lasers in visible and 
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ultraviolet region can be produced and used in applications of laser display, optical cooling, 
and trapping of lithium [4–7]. Laser diode (LD) pumped neodymium doped laser via the 
4F3/2→4I13/2 transition is an effective approach to generate lasers around 1.3 μm. In recent 
years, research on LD pumped Nd3+-doped lasers at 1.3 μm has been conducted with different 
host materials [8–11]. 

Mixed laser crystals with structural disorder have specific characteristics of broad 
absorption and fluorescence spectrum and longer lifetime compared with single crystals. They 
are promising in ultrashort mode-locking lasers [12,13]. Owning to similar ionic radii, Y3+, 
Gd3+ and Lu3+ ions are often used to generate mixed laser materials. Various Nd3+-doped 
mixed crystals such as Nd:LuGdVO4 [14], Nd:GdYVO4 [15], Nd:CaYAlO4 [16] and 
Nd:GYSGG [17] have been produced and investigated in continuous-wave (cw) and pulsed 
laser operation. Recently, Nd3+-doped orthotantalate and niobate have been proven to be 
promising laser materials by efficient 1.06 μm laser operation. In 2015, Peng presented a LD 
end pumped cw Nd:GdTaO4 1066 nm with an optical-to-optical efficiency of 34.6% and a 
slope efficiency of 36% [18]. In 2017, Ding showed a novel Nd:GdNbO4 crystal grown by the 
Czochralski (Cz) method and got an efficient 1066 nm laser via the 4F3/2→4I11/2 transition 
[19]. Nd:Gd0.69Y0.3TaO4 (abbreviated as Nd:GdYTaO4 or Nd:GYTO) and Nd:Gd0.68Y0.3NbO4 
(abbreviated as Nd:GdYNbO4 or Nd:GYNO) obtained by the Cz method were also employed 
to generate lasers around 1.06 μm and performance enhancement was achieved compared 
with single crystals [20–22]. The large energy gap between pump and laser leads to low 
Stokes efficiency and high thermal loading in LD pumped Nd3+-doped 1.3 μm laser. Direct 
pumping to the upper laser level of Nd3+ ion is an effective approach to reduce Stokes factor 
and increase laser efficiency [23,24]. Recently direct pumping has been widely used in Nd3+-
doped lasers with the development of laser diode around 880 nm [25–27]. Owning to broad 
absorption bandwidths around 880 nm, Nd:GYTO and Nd:GYNO crystals have advantages in 
reduction of the requirement of pumping light and efficiency enhancement under direct 
pumping [21,22]. It is meaningful to research on LD directly-pumped 1.3 μm laser 
performance with Nd:GYTO and Nd:GYNO crystals for their unique properties. In addition, 
new ultraviolet wavelengths could be obtained based on the 4F3/2→4I13/2 transitions of 
Nd:GYTO and Nd:GYNO by using high order frequency conversion [28]. 

In this paper, laser performances at 1.3 μm with novel Nd:GYTO and Nd:GYNO mixed 
crystals are studied for the first time to our best knowledge. The laser emission wavelength is 
measured to be 1328 nm in the LD pumped Nd:GYTO 4F3/2→4I13/2 laser while it is 1337 nm 
for Nd:GYNO crystal. The maximum average output power of 1328 nm laser is 435 mW at 
50 Hz with an optical-to-optical efficiency of 5.0% and a slope efficiency of 6.9%. The beam 
quality factors of 1328 nm laser at 50 Hz are measured to be Mx

2 = 1.5 and My
2 = 1.8 by using 

the travelling knife-edge method. In comparison, an output pulse energy of 3.8 mJ is obtained 
at 50 Hz for Nd:GYNO 1337 nm laser, corresponding to an optical-to-optical efficiency of 
3.5% and a slope efficiency of 4.2%. The beam quality factors of Nd:GYNO 1337 nm laser at 
50 Hz are measured to be Mx

2 = 2.2 and My
2 = 2.3 in orthogonal directions. 

2. Experimental setup 

LD

Fiber

Coupling Lenses M2

Laser 
output

Power meter

Laser crystal

X

Z
Knife edge

Lens
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Fig. 1. Experimental setup of LD pumped 1.3 μm laser with Nd:GYTO and Nd:GYNO 
crystals. 
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Figure 1 shows an experimental setup of 879 nm LD end pumped 1.3 μm laser with mixed 
crystals. Pump source is a fiber-coupled 879 nm LD (PearTM P16, nLIGHT Inc.) with a fiber 
diameter of 400 μm and a N.A. of 0.22. With the help of a volume Bragg grating (VBG), the 
output laser wavelength is stabilized at approximately 879.2 nm with a full width at half 
maximum (FWHM) of 0.6 nm. The LD works in quasi-continuous-wave operation with a 
pump duration of 1 ms to reduce influence of thermal effects on laser performance. A pair of 
aspherical lens with focal lengths of f1 = 32.1 mm and f2 = 22.4 mm are used to reimage the 
pump laser into the laser rod with a pump beam waist radius of ωp = 140 μm. Tight pumping 
is preferable to achieve efficient 1.3 μm laser output as 4F3/2→4I13/2 transition is a four-level 
laser system with a smaller emission cross section [29]. The laser crystal is wrapped with 0.05 
mm indium foil, placed in a micro-channel heat sink and kept at 18 °C by water-cooling. The 
dimension of Nd:GYTO is 2x2x5 mm3 and it is 2x2x4 mm3 for Nd:GYNO. Both end facets of 
laser rods are coated with high transmissivity (HT) at 879 nm, 1066 nm, 1328 nm and 1337 
nm (T>99%). A linear cavity with a geometrical length of 30 mm is utilized. The plane mirror 
M1 is HT coated at 879 nm (T>95%) and high-reflectivity coated at 1328 nm and 1337 nm. 
The output mirror M2 is coated with partial transmission at 1328 nm and 1337 nm. The 
reflectivities of output mirror M2 are R = 97.0% and T = 96.0% at 1328 nm while they are T = 
96.4% and T = 95.2% for Nd:GYNO 1337 nm laser. Both the mirrors M1 and M2 are HT 
coated (T>90%) at 1.06 μm to suppress oscillation of the high gain 4F3/2→4I11/2 transition. A 
convex lens is used to measure the beam radius variation and calculates the beam quality 
factors for 1.3 μm lasers by the travelling knife-edge method [30]. 

Nd:GYTO and Nd:GYNO mixed crystals are both grown by using the Cz method. The 
raw materials of Nd2O3, Gd2O3, Y2O3 and Ta2O5 compounds are weighted according to the 
chemical formula Nd0.01Gd0.69Y0.3TaO4. Similarly, the raw materials of Gd2O3, Y2O3, Nb2O5, 
and Nd2O3 compounds are weighted according to the chemical formula Nd0.02Gd0.68Y0.3NbO4. 
Nd:GYTO and Nd:GYNO are both monoclinic crystals similar as the single crystals 
(Nd:GdTaO4 and Nd:GdNbO4) [31, 32]. The crystals are a-axis oriented and cut 
perpendicular to crystallographic axes due to the issue of processing difficulty. Because the 
thermal expansion coefficient along a-axis is smaller than those along b-axis and c-axis for 
these two crystals, a-cut laser rods are chosen to reduce the thermal lensing effect. Table 1 
gives a comparison of characteristics of Nd:GYTO and Nd:GYNO crystals. The doping 
concentration of Nd:GYTO is measured to be 1.67 × 1020 cm−3 by using the X-ray 
fluorescence (XRF) analysis, which is higher than 6.1 × 1019 cm−3 of Nd:GYNO crystal. The 
peak absorption cross section of Nd:GYTO is approximate 1.3 × 10−20 cm2 around 879 nm 
while it is ~1.5 × 10−20 cm2 for Nd:GYNO crystal. The absorption bandwidths for these two 
crystals at 879 nm are broader than 1 nm, so there is good overlap between LD emission and 
crystal absorption spectrum. According to the Füchtbauer-Ladenburg method [33], the 
maximum emission cross sections around 1.3 μm are calculated to be 4.1 × 10−20 cm2 and 4.8 
× 10−20 cm2 for Nd:GYTO and Nd:GYNO crystals [20,21]. 

Table 1. Comparison of characteristics of Nd:GYTO and Nd:GYNO 

Crystals 
Concentration

(cm−3) 
σa(cm2)@

879nm 
Fluorescence 
lifetime(μs) 

Emission peak 
wavelength(nm)

@1.3μm 

σe(cm2) 
@1.3μm 

k(W/mK) 

Nd:GYTO 1.67 × 1020 
1.3 × 
10−20 

182 
1328 4.1 × 

10−20 
3.5-5.2 

Nd:GYNO 6.1 × 1019 
1.5 × 
10−20 

156 1337 
4.8 × 
10−20 

______ 

3. Experimental results and discussions 

The laser performance at 1.3 μm with Nd:GYTO under 879 nm LD pumping with different 
output mirrors is studied at a pump repetition rate of 10 Hz and a pump duration of 1 ms. 
With an output mirror of R = 97.0%, the maximum output energy at 1.3 μm reaches 9.8 mJ 
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with a slope efficiency of 5.7% at the incident pump energy of ~175.1 mJ. In comparison, an 
output energy of 14.6 mJ at 10 Hz is obtained with an output mirror of R = 96.0%, 
corresponding to an optical-to-optical efficiency of 8.3% and a slope efficiency of 8.8%. 
Figure 2 presents the laser emission spectrum of Nd:GYTO crystal via the 4F3/2→4I13/2 
transition ranging from 1300 nm to 1450 nm recorded by using a laser spectrum analyzer 
(Model 721, Bristol Instruments Inc.). The laser emission wavelength via the 4F3/2→4I13/2 
transition is approximate 1328 nm for Nd:GYTO crystal. No 1066 nm emission is observed 
when a fiber-coupled spectrometer (HR4000, Ocean Optics Inc.) is used with a spectrum 
range of 200-1100 nm. 

 

Fig. 2. Emission spectrum of LD pumped Nd:GYTO 1328 nm laser. 

 

Fig. 3. Dependence of output energies on incident pump energy in LD pumped Nd:GYTO 
1328 nm laser at different repetition rates. 

Output characteristic of LD pumped Nd:GYTO 1328 nm laser at different pump repetition 
rates is investigated with an output mirror of R = 96.0%, as shown in Fig. 3. It can be seen 
that the pulse energy of 1328 nm laser increases linearly with the incident pump energy at 10 
Hz and 20 Hz. At repetition rates of 50 Hz and 100 Hz, saturation of output energy occurs 
when the pump energy is higher than 100 mJ. The duty cycle of pumping source is 1% at 10 
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Hz and increases to 10% at 100 Hz. At 100 Hz, output energy decreases at high pump energy 
because of the increased thermal lensing effect of the mixed crystal with the lower specific 
heats and thermal conductivity. The maximum average power at 1328 nm laser reaches 435 
mW at 50 Hz with an optical-to-optical efficiency of 5.0% and a slope efficiency of 6.9%. 
The beam quality factors of 1328 nm laser at 50 Hz under 879 nm LD pumping are measured 
by the travelling knife-edge method. Figure 4 presents the beam radius variation of 1328 nm 
laser at an output average power of 435 mW. The beam quality factors are calculated to be 
Mx

2 = 1.5 and My
2 = 1.8 by fitting these data to Gaussian beam propagation expression. The 

asymmetry of beam quality factors in two directions is caused by the anisotropy of thermal 
conductivity (ka = 4.4 W/mk, kb = 3.5 W/mk, kc = 5.2 W/mk) of Nd:GYTO mixed crystal. 

 

Fig. 4. Beam radius variation of 1328 nm laser at the maximum average output power of 
435mW. 

 

Fig. 5. Emission spectrum of LD pumped Nd:GYNO laser via the 4F3/2→4I13/2 transition. 

In our work, 1.3 μm laser performance with the Nd:GYNO crystal is also studied utilizing 
the same pumping parameters as Nd:GYTO 1328 nm laser. The reflectivity of output mirror 
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is R = 95.2% at 1337 nm. The emission spectrum of Nd:GYNO crystal between 1300 nm and 
1450 nm is recorded in Fig. 5 and the emission peak wavelength is approximate 1337 nm, 
corresponding to the transition R1(4F3/2)→X3(4I13/2). Output performance of LD pumped 
Nd:GYNO 1337 nm laser at different repetition rates is given in Fig. 6. The output energy of 
Nd:GYNO laser shows linear dependence on pump energy at 10 Hz and 20 Hz when the 
pump energy is less than ~138 mJ. When the incident energy is higher than ~140 mJ, the 
increase of the pump energy greatly hampers the output energy because of the poor thermal 
conductivity of Nd:GYNO crystal. The highest output energies of 1337 nm laser are 6.8 mJ 
and 6.2 mJ at 10 Hz and 20 Hz. The output energy at 50 Hz reaches 3.8 mJ at the pump 
energy of ~108.2 mJ, corresponding to an optical-to-optical efficiency of 3.5% and a slope 
efficiency of 4.2%. It could be found that Nd:GYNO 1337 nm laser suffers a more serious 
thermal effects compared with Nd:GYTO at the same pump power. The beam quality factors 
are measured to be Mx

2 = 2.2 and My
2 = 2.3 in orthogonal directions for Nd:GYNO 1337 nm 

laser at 50 Hz. 

 

Fig. 6. Output energies of 879 nm LD pumped Nd:GYNO 1337 nm laser versus incident pump 
energy at different repetition rates. 

Table 2. Comparison of 1.3 μm laser performances with Nd:GYTO and Nd:GYNO 
crystals 

Crystals 
Laser 

wavelength(nm) 

Maximum 
average 

power (mW) 

Slope 
efficiency 

Optical-to-
optical 

efficiency 

Beam quality 
factors 

Nd:GYTO 1328 435(50Hz) 6.9% 5.0% 
Mx

2 = 1.5My
2 

= 1.8 

Nd:GYNO 1337 190(50Hz) 4.2% 3.5% 
Mx

2 = 2.2My
2 

= 2.3 

The comparison of output laser performance between Nd:GYTO 1328 nm laser and 
Nd:GYNO 1337 nm laser is given in Table 2. Nd:GYTO crystal has a superior output 
performance at 1328 nm compared with Nd:GYNO crystal, which is attributed to the long 
fluorescence lifetime of 182 μs and big absorption coefficient around 879 nm. However, it is 
hard to achieve cw laser operation at 1.3 μm with both crystals which is related to the quality 
of available crystals. By using Findlay-Clay method [34], the internal losses of Nd:GYTO is 
measured to be 0.083cm−1 and it is 0.038cm−1 for Nd:GYNO crystal, which are both higher 
than 0.002 cm−1 for Nd:YAG. According to theory, the slope efficiency of laser output could 
be given as following [35]: 
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 s u p

2(1 )

(1 )( ln( ))

R

R R
η η η

δ
−=

+ −
 (1) 

where R is the reflectivity of output mirror, δ is the intrinsic losses, induced by the absorption, 
diffraction or the non-homogeneous of the laser material, ηu is the upper state efficiency and 
ηp is overall pumping efficiency. From Eq. (1), high scattering losses has fatal influence on 
laser efficiency. If the internal losses was reduced to 0.002 cm−1, the efficiencies of 
Nd:GYTO 1328 nm laser and Nd:GYNO 1337 nm laser would be risen by 2.9 and 1.7 times. 
Further power scaling of LD pumped 1.3 μm lasers based on the 4F3/2→4I13/2 transition with 
Nd:GYTO and Nd:GYNO crystals would be expected by improving the quality of crystal. 

4. Conclusion 

In conclusion, we have investigated on 879 nm LD end-pumped 1.3 μm lasers with 
Nd:GYTO and Nd:GYNO mixed crystals for the first time to our best knowledge. The laser 
emission wavelength is measured to be 1328 nm and 1337 nm for Nd:GYTO and Nd:GYNO 
mixed crystals, respectively. The maximum average power of Nd:GYNO laser at 50 Hz 
reaches 190 mW at an incident energy of ~108.2 mJ, corresponding to an optical-to-optical 
efficiency of 3.5% and a slope efficiency of 4.2%. In comparison, it has an better laser 
performance for Nd:GYTO crystal with a highest average output power of 435 mW at 50 Hz 
and an optical-to-optical efficiency of 5.0%. Using the travelling knife-edge method, the 
beam quality factors of LD pumped Nd:GYTO 1328 nm laser at 50 Hz are measured to be 
Mx

2 = 1.5 and My
2 = 1.8 while they are Mx

2 = 2.2 and My
2 = 2.3 for Nd:GYNO 1337 nm laser. 

Investigation on thermal characteristics and improvement of crystal quality will be conducted 
to improve 1.3 μm laser performance with Nd:GYTO and Nd:GYNO crystals. 
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