399 research outputs found

    Workflow-based Fast Data-driven Predictive Control with Disturbance Observer in Cloud-edge Collaborative Architecture

    Full text link
    Data-driven predictive control (DPC) has been studied and used in various scenarios, since it could generate the predicted control sequence only relying on the historical input and output data. Recently, based on cloud computing, data-driven predictive cloud control system (DPCCS) has been proposed with the advantage of sufficient computational resources. However, the existing computation mode of DPCCS is centralized. This computation mode could not utilize fully the computing power of cloud computing, of which the structure is distributed. Thus, the computation delay could not been reduced and still affects the control quality. In this paper, a novel cloud-edge collaborative containerised workflow-based DPC system with disturbance observer (DOB) is proposed, to improve the computation efficiency and guarantee the control accuracy. First, a construction method for the DPC workflow is designed, to match the distributed processing environment of cloud computing. But the non-computation overheads of the workflow tasks are relatively high. Therefore, a cloud-edge collaborative control scheme with DOB is designed. The low-weight data could be truncated to reduce the non-computation overheads. Meanwhile, we design an edge DOB to estimate and compensate the uncertainty in cloud workflow processing, and obtain the composite control variable. The UUB stability of the DOB is also proved. Third, to execute the workflow-based DPC controller and evaluate the proposed cloud-edge collaborative control scheme with DOB in the real cloud environment, we design and implement a practical workflow-based cloud control experimental system based on container technology. Finally, a series of evaluations show that, the computation times are decreased by 45.19% and 74.35% for two real-time control examples, respectively, and by at most 85.10% for a high-dimension control example.Comment: 58 pages and 23 figure

    Hand Hygiene Assessment via Joint Step Segmentation and Key Action Scorer

    Full text link
    Hand hygiene is a standard six-step hand-washing action proposed by the World Health Organization (WHO). However, there is no good way to supervise medical staff to do hand hygiene, which brings the potential risk of disease spread. Existing action assessment works usually make an overall quality prediction on an entire video. However, the internal structures of hand hygiene action are important in hand hygiene assessment. Therefore, we propose a novel fine-grained learning framework to perform step segmentation and key action scorer in a joint manner for accurate hand hygiene assessment. Existing temporal segmentation methods usually employ multi-stage convolutional network to improve the segmentation robustness, but easily lead to over-segmentation due to the lack of the long-range dependence. To address this issue, we design a multi-stage convolution-transformer network for step segmentation. Based on the observation that each hand-washing step involves several key actions which determine the hand-washing quality, we design a set of key action scorers to evaluate the quality of key actions in each step. In addition, there lacks a unified dataset in hand hygiene assessment. Therefore, under the supervision of medical staff, we contribute a video dataset that contains 300 video sequences with fine-grained annotations. Extensive experiments on the dataset suggest that our method well assesses hand hygiene videos and achieves outstanding performance

    Binary error correcting network codes

    Full text link
    We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction

    Screening of specific diagnostic peptides of swine hepatitis E virus

    Get PDF
    © 2009 Zhao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks

    Get PDF
    In the present study, we deal with the stability and the onset of Hopf bifurcation of two type delayed BAM neural networks (integer-order case and fractional-order case). By virtue of the characteristic equation of the integer-order delayed BAM neural networks and regarding time delay as critical parameter, a novel delay-independent condition ensuring the stability and the onset of Hopf bifurcation for the involved integer-order delayed BAM neural networks is built. Taking advantage of Laplace transform, stability theory and Hopf bifurcation knowledge of fractional-order differential equations, a novel delay-independent criterion to maintain the stability and the appearance of Hopf bifurcation for the addressed fractional-order BAM neural networks is established. The investigation indicates the important role of time delay in controlling the stability and Hopf bifurcation of the both type delayed BAM neural networks. By adjusting the value of time delay, we can effectively amplify the stability region and postpone the time of onset of Hopf bifurcation for the fractional-order BAM neural networks. Matlab simulation results are clearly presented to sustain the correctness of analytical results. The derived fruits of this study provide an important theoretical basis in regulating networks

    Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity

    Get PDF
    Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT "browning" and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT "browning" by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases

    Doped Titanium Dioxide Films Prepared by Pulsed Laser Deposition Method

    Get PDF
    TiO2 was intensively researched especially for photocatalystic applications. The nitrogen-doped TiO2 films prepared by pulsed laser deposition (PLD) method were reviewed, and some recent new experimental results were also presented in this paper. A new optical transmission method for evaluating the photocatalystic activity was presented. The main results are (1) PLD method is versatile for preparing oxide material or complex component films with excellent controllability and high reproducibility. (2) Anatase nitrogen-doped TiO2 films were prepared at room temperature, 200°C, and 400°C by PLD method using novel ceramic target of mixture of TiN and TiO2. UV/Vis spectra, AFM, Raman spectra, and photocatalystic activity for decomposition of methyl orange (MO) tests showed that visible light response was improved at higher temperature. (3) The automatic, continuous optical transmission autorecorder method is suitable for detecting the photodecomposition dynamic process of organic compound
    • 

    corecore