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Lighting the Way to Diverse Cyclic Architectures: Expanding the 
Horizons with Photogenerated Ketenes in Sustainable Chemistry 
Wei-Fang Zuo,a† Qian Liu,a† Xin Xie,a Qiwen Pang,a Wei Li,b* Cheng Peng,a Xiang Lia* and Bo Hana* 

Light is a fundamental energy source that has considerably driven scientific progress, especially in the fields of synthetic 
chemistry and pharmaceuticals. Visible-light-mediated synthetic chemistry has revolutionized conventional bond formation 
and enabled previously inaccessible chemical processes under mild conditions. However, the continuous consumption of 
photocatalysts and corresponding additives has led to system complexity and cost escalation, making the development of 
photoactivated substrates a promising yet challenging research frontier. Recently, the emerging photogenerated ketenes as 
a potent class of organic compounds has provided a promising solution to the challenges associated with classic ketene 
preparation and application, with reduced preparative costs and simplified processes. This review highlights how 
photogenerated ketenes have simplified and accelerated the synthesis of diverse cyclic architectures through [2 + n] 
cyclization reactions and complex natural products through Danheiser benzannulation. Significantly, their successful 
application in flow chemistry has demonstrated remarkable potential for industrialization. Despite challenges in terms of 
limited cyclic architectures, elusive mechanisms, and challenging chiral control, ongoing efforts investigating the chemical 
behaviors of photogenerated ketenes and exploring their potential applications hold promise for breakthrough discoveries 
possible, propelling the field forward sustainable.

1. Introduction 
Ranging from cyanobacteria releasing oxygen through 
photosynthesis to higher organisms synthesizing vitamin D 
upon sunlight exposure, light, a fundamental and essential 
energy source, has profoundly shaped life's formation and 
evolution.1-3 Harnessing this powerful energy source 
significantly drive scientific advancements, particularly in 
synthetic chemistry and pharmaceutical industry.4-6 In recent 
years, visible-light-mediated synthetic chemistry has unlocked 
unconventional bond formation and elusive chemical processes 
under mild conditions.7-9 However, this method often demands 
photocatalysts, increasing system complexity and costs due to 
the continuous consumption of precious metals and 
corresponding additives.10 While organic photosensitizers 
present a cost-effective alternative, their lower redox 
properties and instability compromise prevalence.11 Thus, the 
development of substrates capable of directly harnessing and 
converting light energy has become a promising yet challenging 
frontier. 

Ketenes, a class of compounds with functional groups 
featuring cumulated dienes, display remarkable chemical 
reactivity owing to their electron-deficient sp hybrid carbons. 
This reactivity leads to the assembly of a variety of fascinating 
architectures.12 Nevertheless, ketenes' instability, sensitivity to 

water and oxygen, and dimerization propensity pose significant 
challenges. To propel ketenes' advancements and applications, 
innovative and robust strategies are urgently needed. One 
promising strategy is the Wolff rearrangement, discovered by 
Prof. Johann Ludwig Wolff in 1902, which converts α-diazo 
ketones into ketenes.13 Although α-diazo ketones are unstable, 
they generate highly reactive ketene intermediates through 
rearrangement reactions under thermal or transition metal 
catalytic conditions.14-18 Embracing sustainable chemistry 
principles, researchers have initiated exploring visible-light-
mediated approaches to generate ketenes through sequential 
α-diazo ketone photogeneration and Wolff rearrangement, 
which then directly take participate in various chemical 
transformation.19-22 Additionally, ketenes have been recognized 
as efficient synthons in [2 + n] cycloaddition sequence.23, 24 Since 
the comprehensive review of the past century of ketene 
chemistry by Thomas T. Tidwell, cycloaddition reactions 
involving photogenerated ketenes have garnered interest over 
the last two decades, offering novel, eco-friendly synthesis 
methods for constructing diverse heterocyclic architectures.12, 

25, 26 Regrettably, this significant research achievement remains 
inadequately documented and insufficiently scrutinized. 

In this context, this review will emphasize on the versatile 
photogenerated ketenes, generated from Wolff rearrangement 
of α-diazo ketones, which participate in various cyclization 
reactions, encompassing our contributions to this booming 
area. By appropriately organizing the existing literature 
according to photogenerated ketenes' reaction patterns and 
their applications in the synthesis of diverse heterocyclic 
molecules and intricate natural products as well as in the 
burgeoning field of flow chemistry, we aspire to highlight the 
significant research advancements within this field. A profound 
understanding of photoactivation in ketene-mediated 

a. State Key Laboratory of Southwestern Chinese Medicine Resources, School of 
Pharmacy and College of Medical Technology, Chengdu University of Traditional 
Chinese Medicine, Chengdu 611137, China 
E-mail: lixiang2@cdutcm.edu.cn; hanbo@cdutcm.edu.cn  

b. School of Engineering, Institute for Materials & Processes, The University of 
Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom  
E-mail: wli5@ed.ac.uk  

† These authors contributed equally to this work and shared the first authorship. 



ARTICLE Journal Name 

  

Please do not adjust margins 

Please do not adjust margins 

cycloaddition reactions paves the way for the construction of a 
diverse array of valuable cyclic architectures, thereby expanding 
the boundaries of possibility in this fascinating realm of 
chemistry. 

2. Photogenerated Ketenes and Their Role in 
Organic Synthesis 

2.1 Characteristics and reaction patterns of photogenerated 
ketenes 

In 1951, nearly fifty years after Hermann Staudinger's discovery 
of diphenylenones and Wolff's proposed rearrangement of 
diazo ketones, Horner reported the first photochemical 
production of ketenes, a discovery that greatly enhanced the 
enduring vitality of ketenes chemistry.27 Since then, ketenes 
have been a key reaction intermediate in organic synthesis, with 
consistent high research interest from 2003 to the present, and 
an increasing trend in research on photogenerated ketenes, 
extending to various fields including chemistry, polymer 
science, and physics(Scheme 1a and 1b). Ketenes are 
characterized by an unusual 'heteroallenic' bond structure, 
which gives rise to their unique reactivity.28 The ketene's 
highest occupied molecular orbital (HOMO) is located 
perpendicular to the plane of the ketene, while the lowest 
unoccupied molecular orbital (LUMO) is located within that 
plane (Scheme 1c). This orientation allows for a large negative 
charge on the oxygen and β-carbon, while a similarly large 
positive charge is placed on the α-carbon. Photogenerated 
ketenes provide a simplified approach to the preparation of 
ketene intermediates while retaining the same reaction pattern 
diversity of ketenes, such as cycloaddition, nucleophilic SN 
substitution and electrophilic addition. Of particularly, the use 
of photogenerated ketenes in the construction of various cyclic 
molecules is the most representative branch of research. 

2.2 Photoactivation in Wolff rearrangement of α-diazo ketones 

α-diazo ketones have emerged as one of indispensable 
reagents, owing to their facile synthesis and convenient 
preservation properties. Their structures, which encompass 
multiple resonance forms, display enhanced stability compared 
to conventional diazo compounds. This feature is attributable 
to the presence of an electron-withdrawing group at the α-
position, facilitating the delocalization of the negative charge 
from the carbene to the carbonyl group. While Wolff 
rearrangements have been extensively employed in Arndt-
Eistert reactions and ring contraction methods, contemporary 
investigations persist in unveiling novel synthetic 
methodologies involving reactive ketenes. 

In contrast to conventional Wolff rearrangement reactions, 
which often necessitate heating or transition metal catalysis,  
visible-light-induced α-diazo ketone rearrangement reactions 
provide a multitude of advantages, such as mild reaction 
conditions, environmentally benign and non-toxic 
characteristics, and the release of nitrogen gas as the sole by-
product. These reactions yield highly reactive ketene species Ⅰ 
through alkyl 1,2-migration of carbene intermediates, which 

can be harnessed for various synthetic applications, without 
addition of extra photocatalysts or photosensitizers (Scheme 
1c). Although the mechanistic underpinnings of the Wolff 
rearrangement remain a topic of considerable debate due to 
the interplay between synergistic and stepwise pathways, a 
preponderance of evidence suggests that light-induced ketene 
formation favours a stepwise process, during which the 
presence of an acyl carbene can be detected.29-32 

 
Scheme 1. a) Number of papers published on Web of Science per year from 2003 to 
present for response queries (ketenes) vs. (ketenes and (light or photo)). b) Analysis of 
the number of articles per year on Web of Science for response queries (ketenes and 
(light or photo)) in various research areas from 2003 to present. c) The frontier molecular 
orbitals of ketene and the conversion of α-diazo ketones to ketenes under 
photochemical conditions. 

3. Photogenerated Ketenes Facilitating Diverse 
Cyclic Architectures Assembly 
Photogenerated ketenes have emerged as a promising alternative to 
classical ketenes, due to the limitations associated with the latter's 
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preparation and preservation. Cycloaddition, a critical aspect of 
ketene chemistry, has been hindered by harsh preparation 
conditions and instability. To address this challenge, the use of 
photogenerated ketenes from α-diazo ketone rearrangements as 
highly reactive intermediates has gained traction as a more direct 
and modest strategy for constructing valuable modules. The 
following sections will present significant and relevant cases 
demonstrating the potential of photogenerated ketenes in 
advancing the field of cycloaddition. 

3.1 Elegant strategies towards valuable β-lactams 

The synthesis of valuable β-lactams via ketene-mediated [2 + 2] 
cyclization reactions is a crucial pathway in organic synthesis. In 
2022, our group established a visible-light-mediated sequential 
reaction strategy that combines Wolff rearrangement with 
Staudinger cyclization, using in situ generated ketenes Ⅰ and 
pyrazolone ketimines 2 to create valuable spiro-pyrazolone-β-
lactams 3 (Scheme 2).33 This approach offers a reliable solution 
for synthesizing spiro-pyrazolone-β-lactams with high yields, 
excellent substrate tolerance, and gram-scale production while 
providing direct access to multisubstituted pyrazole-
morpholine skeletons. Optimization of the reaction conditions 
revealed that the wavelength of visible-light plays a critical role 
in enhancing reaction rates, and controlled experiments 
demonstrated the importance of visible-light-mediated 
irradiation in cyclization. Furthermore, a plausible mechanism 
was suggested to explain the observed efficiency. 

Prior to our work above, Igor D. Jurberg and colleagues 
proposed an innovative strategy for the visible-light-mediated 
synthesis of β-lactams from aryl diazoacetate 4 (Scheme 3).34 
This process begins with the photolysis-generated free carbene 
intermediate, which reacts with azide 5 to form an imine. 
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Scheme 2. Photogenerated ketenes undergo Wolff rearrangement and Staudinger 
cycloaddition with pyrazolone ketimines to construct spiro-pyrazolone-β-lactams. 
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Scheme 3. Visible-light-mediated strategies employing photogenerated ketenes and 
aryldiazoacetates for the synthesis of multi-substituted β-lactams. 
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Scheme 4. Three-component reaction of photogenerated ketenes, aldehydes, and 
amines leading to the synthesis of β-lactams. 

Subsequently, the imine undergoes a sequential reaction with a 
photochemically promoted ketene intermediates Ⅰ to yield β-
lactams 6. Remarkably, this novel approach obviates the need 
for rigorous water removal and air isolation, rendering it more 
cost-effective than metal-catalyzed or thermally promoted 
alternatives. 

Historically, the Staudinger reaction has faced challenges in 
developing three-component reactions between ketones, 
amines, and carbonyl derivatives, primarily due to the intrinsic 
reactivity between ketones and amines, as well as the typical 
ketone precursor chlorides. To address this issue, Basso's group 
introduced the first three-component Staudinger reaction 
involving amines 7, aldehydes 8, and α-diazo ketones 1 (Scheme 
4).35 The key to the success of this reaction is the excess 
aldehyde, which expedites amine consumption and drives the 
imine formation equilibrium, while the diazonium remains inert 
to the aldehyde. Although the isolated yield of this innovative 
one-pot reaction is lower than that of the reaction with a 
preformed imine likely due to incomplete imine formation, its 
synthetic simplicity and amenability to automated production 
compensate for this drawback. 

3.2 Advancements in accessing five-membered architectures 

Blue light-mediated protocols that utilize ketenes with various 
substrates and catalytic modes have proven to be useful in 
constructing biological structures. Hydroindoles, a distinct class 
of scaffolds, are ubiquitously found in various natural products 
and synthetic pharmaceuticals. In 2021, the Lu group reported  
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Scheme 5. Desymmetric [3 + 2] cycloaddition reaction of para-quinamines with 
photogenerated ketenes for synthesizing hydroindoles. 

an unprecedented method for synthesizing hydroindoles 11 via 
DBU-catalyzed desymmetric [2 + 3] cycloaddition reactions 
between photogenerated ketenes Ⅰ from α-diazo ketones 1 and 
para-quinolines 10 (Scheme 5).36 The synthetic strategy 
initiated with a nucleophilic attack of para-quinolines on 
photogenerated ketenes following deprotonation, ultimately 
yielding a range of hydroindoles with all-quaternary carbon 
centers and near-complete diastereo-selectivity. 

In the same year, Igor D. Jurberg's group described a blue 
light-mediated reaction of aryl diazoacetate 4 with sulfoxide 12, 
producing corresponding sulfoxonium ylides 13. Subsequent 
reactions with photogenerated ketenes Ⅰ generated 5-alkoxy-
2,2,4-trisubstituted furan-3(2H)-ones 14 (Scheme 6).34 This 
innovative synthetic strategy originates from an aryl 
diazoacetate precursor and allows for the direct preparation of 
valuable intermediates such as sulfoxonium ylides and 
hydrogenated furanones, potentially broadening its 
applicability in fields like organic synthesis. 

Although recent advancements have identified ketenes as 
promising C2 synthons for [2 + n] cyclization reactions, in a rare 
number of cases, [2 + 3] cyclization reactions have unexpectedly 
involved C=O rather than C=C. In 2019, the Xiao group 
introduced a novel sequential [2 + 3] cycloaddition reaction of 
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Scheme 6. Visible-light-mediated strategies for assembling multi-substituted furan-
3(2H)-ones using aryldiazoketones and aryldiazoacetates. 
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ketenes Ⅰ and vinyl cyclopropanes (VCPs) 15 utilizing a 
photogenerated/palladium-catalyzed synergistic mode 
(Scheme 7).37 During ring closure, the anticipated C-allyl 
alkylation was unexpectedly superseded by selective O-allyl 
alkylation, culminating in the formation of highly functionalized 
tetrahydrofuran structures 16 via [2 + 3] cycloaddition pathway 
involving C=O. However, attempts to asymmetric variants 
yielded only moderate enantiomeric induction (75:25 er). 

This limitation was removed in a further protocol. Alternative 
VCPs 17 bearing two disparate electron-withdrawing groups 
achieved this highly diastereoselective and asymmetric [2 + 3] 
cycloaddition reaction, delivering a promising chiral 
tetrahydrofuran backbone 18 (Scheme 8).38 Mechanistic studies 
have shown that remote stereospecific substrate induction via 
hydrogen bonding of the chiral ligand is crucial for success. 

3.3 Advancements in accessing diverse six-membered heterocycles 

Similarly, the catalytic asymmetric cycloaddition of 
photogenerated ketene intermediates Ⅰ presents a novel 
approach for synthesizing six-membered chiral heterocyclic 
molecules. As early as 2017, the Xiao group successfully  
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Scheme 9. Enantioselective [2 + 4] cycloadditions of photogenerated ketenes and vinyl 
benzoxazinanones via sequential photoactivation and palladium catalysis. 

developed a light-induced Wolff rearrangement/palladium-
catalyzed asymmetric [2 + 4] cycloaddition sequential strategy 
for producing diverse chiral quinolones 20 (Scheme 9).39 The 
reaction employed only visible light as a clean reagent and 
energy source, releasing non-toxic nitrogen. Notably, the 
photolytic Wolff rearrangement of α-diazo ketones which can 
generate ketenes without traces under mild conditions, has 
addressed compatibility issues between ketenes and their 
preparation processes with transition metals. On one hand, 
ketenes, being highly electron-deficient species, may be 
sensitive to low-valent transition metals, leading to 
decarbonylation and aggregation.40-42 On the other hand, the 
reactive acyl chloride in the process of synthesizing ketenes 
using acyl chloride and amine may impede the transition metal-
catalyzed organic transformations.43 

In another protocol, photogenerated ketenes Ⅰ facilitated the 
construction of structurally unique oxygen-containing 
heterocycles through a compatible mode (Scheme 10).44 The 
rapid capture of the oxygen-1,4-dipole, generated in situ from 
2-alkylidenemethylenecarbonate 21 under Pd catalysis, by the 
ketenes Ⅰ produces highly functionalized chiral lactone 
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Scheme 10. Enantioselective [2 + 4] cycloaddition of photogenerated ketenes and oxo-
1,4-dipoles. 
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Scheme 11. Enantioselective [2 + 4] cyclization of photogenerated ketenes with 
azadienes by sequential photoactivation/isothiourea catalysis. 

skeletons 22 containing quaternary carbon stereocenters with 
high reaction efficiency and selectivity. This constitutes another 
vital example of the combined strategy of visible-light induction 
and transition metal catalysis in chiral heterocycle construction. 

Synergistic catalysis of photoactivation and organocatalytic 
strategies using ketenes remains a significant challenge, as few 
examples combine photoactivation with organocatalysis for 
establishing ketene chiral environments.45, 46 In 2019, Song's 
group integrated Wolff rearrangement and isothiourea-
catalyzed sequential reactions, developing an effective strategy 
for allowing stereocontrol of all-carbon quaternary centers 
(Scheme 11).47 The C1-ammonium enolates produced by 
photogenerated ketenes Ⅰ in the presence of isothiourea Cat.1 
were delivered with auronederived α,β-unsaturated imine 23 to 
benzofurane-fused dihydropyridinone derivatives 24 with high 
enantio- and diastereo-selectivity. 

Similarly, N-heterocyclic carbene (NHC)-catalyzed synthesis is 
also an efficient method for forming enolate intermediates. In 
2020, Hui's group first disclosed an elegant strategy for 
synthesizing tetrahydropyrano[2,3-b]indoles 26 through 
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Scheme 12. Stereoselective [2 + 4] cycloaddition of photogenerated ketenes and 3-
alkylenyloxindoles. 
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Scheme 13. Asymmetric [2 + 4] annulation of photogenerated ketenes and saccharine-
derived azadienes. 

sequential Wolff rearrangement and NHC catalysis between α-
diazo ketones 1 and 3-alkylidene-indole substrates 25 (Scheme 
12).48 Photogenerated ketenes from α-diazo ketones bind to 
NHC, forming enolate intermediates with a chiral environment 
and participate in subsequent cyclization reactions, ultimately 
preparing functionalized indole derivatives. Products featuring 
all-carbon-quaternary stereocenters were obtained in good 
yields, enantioselective and diastereoselective manners. 

In a subsequent study by Yao's group, chiral 
dihydropyridones containing sulfonamide structures 28 were 
prepared via photogenerated ketenes Ⅰ and saccharine-derived 
azadienes 27, employing the same reaction pattern as Hui's 
group (Scheme 13).49 This protocol exhibited mild reaction 
conditions, satisfactory enantio- and diastereo-selectivity. 
Furthermore, a catalyst-free version was also disclosed in their 
work, providing products with high yield and excellent 
diastereoselectivity.50 

Building on previous research in organocatalysis51 and 
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Scheme 14. A synergistic [2 + 4] cyclization strategy between photogenerated ketenes 
and ortho-amino MBH carbonates. 

continued interest in medicinal chemistry52, our group recently 
reported a synergistic catalytic mode that combines photolysis 
and Lewis base catalysis using photogenerated ketenes Ⅰ and 
ortho-amino MBH carbonates 29 to access multifunctional 
dihydroquinolinone frameworks 30 (Scheme 14).53 Although an 
attempt at an asymmetric version did not yield satisfactory 
results, this powerful [2 + 4] cyclization approach further 
extends the application of photogenerated ketenes in 
photo/organocatalytic modes. 

3.4 Ambitious Attempts to Achieve Medium-Sized Architectures 

Medium-sized heterocycles are present in numerous 
biologically active natural products and synthetic molecules 
with essential medicinal properties. Developing elegant 
synthetic strategies for constructing these valuable molecules 
has been a challenging task in organic chemistry. The Xiao group 
disclosed a protocol for the enantioselective [2 + 5] 
cycloaddition of vinylidene carbonate 31 and α-diazo ketones 1, 
enabling the synthesis of various seven-membered lactones 32 
with challenging chiral quaternary stereocenters through 
enantioselective capture of palladium-containing 1,5-dipole 
intermediates by photogenerated ketenes Ⅰ (Scheme 15).54 
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Scheme 15. Enantioselective capture of 1,5-dipoles by photogenerated ketenes for the 
construction of seven-membered lactones. 

Distinct from all-carbon 1,3-dipoles, the reactivity of 
palladium-catalyzed VCP can be converted to oxygen-1,5-
dipoles to achieve the construction of many oxygen-containing 
heterocycles. The Xiao group described the asymmetric [2 + 5] 
cycloaddition reaction of VCPs 33 with photogenerated ketenes 
Ⅰ to highly functionalized seven-membered lactones 34 under 
palladium-catalyzed/light-driven conditions (Scheme 16).55 This 
protocol overcame the extremely challenging chemo- and peri-
selectivities. This reactive transformation illustrated in this work 
also highlights the potential of photogenerated ketenes Ⅰ for 
synthesizing these challenging intermediate-sized rings. 

Turning our attention to more formidable scaffolds is 
essential due to their unique biological effects and practical 
value as multifunctional intermediates. Despite unfavourable 
entropic factors and transannular interactions that have limited 
synthetic strategies for these scaffolds, some breakthroughs 
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have been achieved. For instance, the Lu group ingeniously 
reported the asymmetric [2 + 6] dipole cyclization of 
photogenerated ketenes Ⅰ and vinyl oxetanes 35 to directly 
access these valuable chiral eight-membered lactone-
containing scaffolds 36 (Scheme 17).56 The palladium-
containing 1,6-dipole undergoes nucleophilic addition to the 
photogenerated ketenes Ⅰ, forming important zwitterionic 
intermediates. Subsequent intramolecular asymmetric allylic 
alkylation smoothly yields a series of eight-membered 
compounds containing all-carbon quaternary stereocenters. 

In another study, the Xiao group disclosed a [2 + 8] higher 
order cycloaddition reaction between vinyl carbamates 37 and 
α-diazo ketones 1, which goes beyond the traditional 
photoinduced/palladium-catalyzed synergistic process (Scheme 
18).57 The multifunctional precursor 37 retains its CO2 under 
palladium catalysis, generating unusual 1,8-dipoles. The 
enantioselective capture of the carbonate anion by the 
photogenerated ketenes Ⅰ and subsequent intramolecular 
allylation provided the desired ten-membered monocyclic 

O
Pd

R1

•O a

b

36

Pd
+

1

Selected samples

68% yield, 80:20 er68% yield, 84:16 er

36

A proposed mechanism

20 examples
up to 93% yield 

up to 95:5 er351

O

R1

O

Ph

O
8

O

Ph

O

O

R1

O
8

8

 The Lu Group

O

N2

• O
I

35

Ar =2-Np

L6

Ligand

O

O
P

Me

Me

N
Cy

Ph Ph

S Ar
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product 38. This protocol successfully overcame the challenging 
high stereo-, chemo-, and peri-selectivities. 

Represented an important branch of ketene chemistry, 
photogenerated ketenes have captured the attention of organic 
chemists due to their fascinating properties. Through sustained 
efforts, significant advances have been achieved, resulting in 
valuable strategies that not only expand the establishment of 
ketene methodology but also extend its application to the 
transformation of complex natural products and bioactive 
molecules, as described in the following section. 

4. Unleashing Photogenerated Ketenes' Potential 
in Complex Natural Product Synthesis 

The Danheiser benzannulation is a crucial method in which 
photogenerated ketenes from α-diazo ketones are utilized in 
the construction of highly functionalized complex molecules 
(Scheme 19a).58 Typically, unsaturated α-diazo ketones 39 
undergo Wolff rearrangement under photochemical conditions 
to generate the corresponding ketene intermediate 40, which is 
then captured by ketenophilic acetylene 41 to form a 
cyclobutenone derivative 42. This intermediate then undergoes 
sequential 4π electrocyclic cleavage, 6π electrocyclic closure, 
and tautomerization to yield the multisubstituted phenol 
conformation 44. 

Ready and colleagues used this benzannulation strategy 
employing photogenerated ketenes to achieve the 
enantioselective synthesis of the chromone alkaloid (+)-
Dysoline (50), a natural product containing polysubstituted 
benzenes (Scheme 19b).59 Irradiation of the unsaturated diazo 
ketone 45 with blue LED generated the ketene intermediate 46, 
which underwent selective [2 + 2] cycloaddition with the alkynyl 
ether 47 to produce the important cyclobutenone intermediate 
48. The key benzannulation product 49 was obtained after ring 
cleavage, electrocyclisation, and aromatisation. Ultimately, the 
enantioselective synthesis of alkaloid 50, which is selectively 
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Scheme 19. a) General process of Danheiser benzannulation involving photogenerated ketenes. b) Selective synthesis of (+)-Dysoline using a Danheiser benzannulation with 
photogenerated ketenes. c) Several natural products are synthesized utilizing Danheiser benzannulation involving photogenerated ketenes.

cytotoxic to HT1080 fibrosarcoma cells (IC50 of 0.21 μM), was 
completed after subsequent transformations. 

Moreover, this innovative benzannulation strategy has been 
successfully applied to the synthesis of various complex natural 
products containing polysubstituted benzenes such as 
Hyellazole (51), Danshexinkun A (52), Tanshinone I (53), and 
Aegyptinones B (54), demonstrating its utility in constructing 
highly functionalized complex molecules (Scheme 19c).58, 60, 61 

Overall, this photochemical methodology offers remarkable 
advantages over traditional α-diazo ketone-to-ketene 
conversion for the synthesis of natural products. By adopting 
milder and more environmentally friendly conditions, it 
differentiates itself from classical cyclization methods, avoiding 
harsh conditions such as high temperature. Additionally, this 
state-of-the-art approach enables the synthesis of complex 
polycyclic aromatic hydrocarbons and heteroaromatic systems 
frequently found in complex bioactive molecules, which are 
unattainable using the original version of this annulation 
strategy. Importantly, the photochemical method provides 
access to a broad spectrum of substituted ketenes, originating 
from a wide variety of carbonyl precursors, thereby expanding 
the possibilities for functionalizing products and advancing their 
potential applications in the pharmaceutical industry. 

5. Expanding Applications of Photogenerated 
Ketenes in Flow Chemistry 

The utilization of light as a green and traceless energy source is 
a captivating aspect of photochemistry. Over the past decade, 

the development of light as a sustainable chemical tool has 
been rapid due to the mild photoreaction conditions. Visible-
light-dependent photochemical reactions require adequate 
exposure to ensure comprehensive reaction progression. 
However, the attenuation effect of photon transport 
(Bouguer−Lambert−Beer law) considerably hinders the 
implementation of these strategies on large scales.62 
Specifically, incomplete reactions, unexpected by-products, and 
complex purification processes can arise due to insufficient or 
excessive irradiation. Thus, new technologies or strategies are 
urgently required to overcome these issues. 

Flow chemistry, acclaimed as one of the top ten emerging 
technologies in chemistry by the International Union of Pure 
and Applied Chemistry (IUPAC), has gained substantial 
recognition within the pharmaceutical industry (Scheme 20a).63-

66 The narrow inner diameter and the higher surface-to-volume 
ratio of the microreactor in flow chemistry provide 
photochemical reagents with a more uniform and sufficient 
opportunity for irradiation, resulting in shorter reaction times, 
fewer by-products, and higher yields. Moreover, scale-up 
reaction can be smoothly achieved by merely accelerating the 
flow rate and extending reaction time. The narrow reaction 
space of the microreactor prevents the accumulation of 
hazardous substances, addressing the safety issues in large-
scale reaction processes. Incorporating microfluidics, lab-on-a-
chip devices, real-time online detection, and other cutting-edge 
tools promotes the development of miniaturized and intelligent 
flow chemistry systems, which marks a new era for continuous 
reaction production processes in the pharmaceutical industry. 
Therefore, the integration of photochemistry and flow 
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Scheme 20. a) General processes of flow chemistry. b) Preparation of valuable β-Lactams from continuous flow photolysis using CFL. c) Synthesis of polycyclic and heterocyclic 
aromatic hydrocarbons by reaction of Ynamides and photogenerated ketenes in a flow chemistry system. d) Sunlight-driven gram-scale preparation of products in flow chemistry 
systems. BPR, Back Pressure Regulators; CFL, Compact Fluorescent Light.

chemistry has emerged as a burgeoning trend, and recent cases, 
including the successful synthesis of ibuprofen, have validated 
the feasibility of photochemical pharmaceuticals in flow 
chemistry.62, 67-69 

As known, photogenerated ketenes originating from α-diazo 
ketones have demonstrated compatibility with flow chemical 
systems. Basso et al. have demonstrated that the productivity 
of photogenerated ketene-based reaction has been significantly 
improved under continuous flow conditions compared to batch 
processes.70 Additionally, the explosive nature of diazo 
compounds makes it challenging to use them on a large scale in 
conventional batch reactions. Factors such as sufficient light 
radiation and safety must be taken into account. From this 
perspective, flow chemistry is undoubtedly one of the most 
suitable options. Significantly, the continuous release of the 
precursor α-diazo ketone to the ketenes under photochemical 
conditions maintains a low concentration of the ketene 
intermediates, thus avoiding their dimerization. Several pioneer 
works have been reported that demonstrate the potential of 
photogenerated ketenes in this field. 

As early as in 2010, Konopelski and colleagues reported a 
ground-breaking achievement using photogenerated ketenes in 

a continuous flow system (Scheme 20b).71 The team 
successfully prepared β-lactams 56, a promising class of 
medicinal compounds, through the Wolff rearrangement and 
intramolecular ring closure of α-diazo-β-ketoamides 55. The 
narrow inner diameter of the flow tube and the efficient light 
transmission properties played a crucial role in ensuring the 
smooth and efficient progression of the reaction. The 100 W 
compact fluorescent light offers a safe and environmentally 
friendly photochemical solution and does not require additional 
cooling. This improved protocol significantly reduces the 
reaction time, with the reaction completed in 48 hours on a 1 g 
scale (compared to 0.1 g, 18 hours for the batch process). This 
breakthrough represents a significant step forward in applying 
photogenerated ketenes in flow chemistry and demonstrates 
their potential for industrialization. 

Later, Rick L. Danheiser's group documented the cyclization 
of the precursor of photogenerated ketenes, α-diazo ketones 
57, with various reaction partners 58, including N-
phosphonoalkynylamine and N-sulfoalkynylamine, in flow 
photochemistry (Scheme 20c).72 This process generated a range 
of heterocyclic structures 59, such as polysubstituted indoles 
and benzothiophenes. Although the yield in the continuous-
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flow FEP coiled reactor was not significantly improved, the 
greatly reduced reaction time (from 50 hours to 33 minutes) 
ensured that the reaction proceeded efficiently and protected 
the functional groups from photolysis, thus making direct scale-
up possible. Following this work, the Xiao group conducted a 
comprehensive investigation of the combined utility of an 
asymmetric [2 + 4] cycloaddition reaction involving α-diazo 
ketones 1 and vinyl benzoxazinanones 19, attaining promising 
results (Scheme 20d).39 This approach enabled gram-scale 
preparation under flow chemistry conditions, utilizing sunlight 
directly as the light source and yielding chiral quinolinones 20 
with significantly reduced catalyst loading (down to 1 mol%) on 
par with laboratory outcomes. 

Undoubtedly, these findings underscore the potential of 
photoreactions for industrial applications and suggest that 
photogenerated ketenes derived from α-diazo ketones serve as 
valuable reaction precursors for pharmaceutical applications in 
flow chemistry under photochemical conditions. 

6. Conclusions 

Light has emerged as a promising, clean, and efficient energy 
source for modern chemistry in recent years. One of the most 
exciting developments in this field is the emergence of 
photogenerated ketenes, a novel class of organic compounds 
that offer a solution to the limitations associated with classic 
ketene preparation and preservation, with reduced preparative 
costs and simplified processes. Photogenerated ketenes have 
simplified the construction of diverse heterocyclic architectures 
through [2 + n] cyclization reactions. 

Nevertheless, several challenges persist in the field of 
photogenerated ketenes. For instance, the conversion of 
photogenerated ketenes to unconventional cycles, particularly 
more challenging macrocyclic conformations, remains 
infrequent due to entropic factors and transannular 
interactions. Therefore, it is essential to identify suitable 
substrates capable of achieving these transformations to 
construct targeted complex molecules accurately and 
effectively. Inducing chiral environments for photogenerated 
ketenes via asymmetric synthetic strategies is particularly 
challenging, likely due to their short lifetime, necessitating 
additional solutions. Although co-catalytic models have enabled 
chiral control and the production of optically pure products, 
establishing chiral environments for photogenerated ketenes 
beyond chiral isothioureas or carbenes has not been extensively 
studied. Further mechanistic studies are necessary to enhance 
our understanding of ketene properties, such as the 
observation that ketene intermediates selectively participate in 
[2 + 3] cyclization reactions via C=O and C=C bonds, a 
phenomenon not observed in other reaction types. 

Despite these challenges, photogenerated ketenes have 
demonstrated remarkable potential in both laboratory and 
industrial settings, enabling the updating and broadening of 
classic ketene reactions to expand their applicability. This has 
been impressively reflected in the total synthesis of complex 
natural products through Danheiser benzannulation and the 

potential for flow chemistry to benefit the pharmaceutical 
industry. Notably, recent reports of versatile electrophilic 
reagents containing ketenes as molecular probes suggest their 
potential in the biotherapeutic field as photoaffinity probes.73-

77 
In conclusion, pursuing more efficient and sustainable 

synthetic routes utilizing photogenerated ketenes has the 
potential to revolutionize the construction of diverse cyclic 
architectures. By addressing the challenges and limitations 
through interdisciplinary efforts of researchers worldwide 
focused on investigating the mechanisms underlying 
photogenerated ketenes' behaviour, breakthrough discoveries 
can be made, driving the field forward. We believe that the 
horizons of photogenerated ketenes can be expanded into new 
areas and provide further benefits to green and sustainable 
chemistry in the foreseeable future. 
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