23 research outputs found

    Efficacy and safety of PCSK9 inhibition in cardiovascular disease: a meta-analysis of 45 randomized controlled trials

    Get PDF
    Background: Safety concerns about proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors make physicians reluctant to prescribe agents for patients. The present aim was to assess the efficacy and safety of alirocumab, evolocumab and bococizumab in patients with atherosclerotic cardiovascular disease (ASCVD). Methods: Medline, the Cochrane Library and Clinicaltrials.gov were searched for 45 randomized controlled trials, involving 97,297 patients. Results: Compared with the control group, PCSK9 inhibitors could significantly reduce low-density lipoprotein cholesterol, total cholesterol, triglycerides and increase high-density lipoprotein cholesterol. Alirocumab was associated with lower incidence of unstable angina (p < 0.05) and myocardial infarction (p < 0.05), compared with the control group. Alirocumab (odds ratio [OR] 0.76, 95% confidence interval [CI] 0.60–0.97, p < 0.05), evolocumab (OR 0.79, 95% CI 0.66–0.95, p < 0.05) and bococizumab (OR 0.60, 95% CI 0.42–0.84, p < 0.05) were associated with lower incidence of stroke, compared with control group. The incidence of injection-site reactions was significantly higher in alirocumab (OR 1.68, 95% CI 1.45–1.93, p < 0.05), evolocumab (OR 1.64, 95% CI 1.41–1.91, p < 0.05) and bococizumab (OR 8.03, 95% CI 6.85–9.41, p < 0.05) group than in the control group. Conclusions: Alirocumab and evolocumab could ameliorate lipid profile and reduce the risk of cardiac disorders and stroke with satisfactory safety and tolerability. However, injection-site reactions should be paid attention to

    Fangchinoline Inhibits Human Immunodeficiency Virus Type 1 Replication by Interfering with gp160 Proteolytic Processing

    Get PDF
    The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 enve1ope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach

    Comprehensive analysis of circulating cell-free RNAs in blood for diagnosing non-small cell lung cancer

    No full text
    Early screening and detection of non-small cell lung cancer (NSCLC) is crucial due to the significantly low survival rate in advanced stages. Blood-based liquid biopsy is non-invasive test to assistant disease diagnosis, while cell-free RNA is one of the promising biomarkers in blood. However, the disease related signatures have not been explored completely for most cell-free RNA transcriptome sequencing (cfRNA-Seq) datasets. To address this gap, we developed a comprehensive cfRNA-Seq pipeline for data analysis and constructed a machine learning model to facilitate noninvasive early diagnosis of NSCLC. The results of our study have demonstrated the identification of differential mRNA, lncRNAs and miRNAs from cfRNA-Seq, which have exhibited significant association with development and progression of lung cancer. The classifier based on gene expression signatures achieved an impressive area under the curve (AUC) of up to 0.9, indicating high specificity and sensitivity in both cross-validation and independent test. Furthermore, the analysis of T cell and B cell immune repertoire extracted from cfRNA-Seq have provided insights into the immune status of cancer patients, while the microbiome analysis has revealed distinct bacterial and viral profiles between NSCLC and normal samples. In our future work, we aim to validate the existence of cancer associated T cell receptors (TCR)/B cell receptors (BCR) and microorganisms, and subsequently integrate all identified signatures into diagnostic model to improve the prediction accuracy. This study not only provided a comprehensive analysis pipeline for cfRNA-Seq dataset but also highlights the potential of cfRNAs as promising biomarkers and models for early NSCLC diagnosis, emphasizing their importance in clinical settings

    Awareness of intratumoral bacteria and their potential application in cancer treatment

    No full text
    Abstract Hitherto, the recognition of the microbiota role in tumorigenesis and clinical studies mostly focused on the intestinal flora. In contrast to the gut microbiome, microorganisms resident in tumor tissue are in close contact with cancer cells and therefore have the potential to have similar or even different functional patterns to the gut flora. Some investigations have shown intratumoral bacteria, which might come from commensal microbiota in mucosal areas including the gastrointestinal tract and oral cavity, or from nearby normal tissues. The existence, origin, and interactions of intratumoral bacteria with the tumor microenvironment all contribute to intratumoral microorganism heterogeneity. Intratumoral bacteria have a significant role in tumor formation. They can contribute to cancer at the genetic level by secreting poisons that directly damage DNA and also intimately related to immune system response at the systemic level. Intratumoral bacteria have an impact on chemotherapy and immunotherapy in cancer. Importantly, various properties of bacteria such as targeting and ease of modification make them powerful candidates for precision therapy, and combining microbial therapies with other therapies is expected to improve the effectiveness of cancer treatment. In this review, we mainly described the heterogeneity and potential sources of intratumoral bacteria, overviewed the important mechanisms by which they were involved in tumor progression, and summarized their potential value in oncology therapy. At last, we highlight the problems of research in this field, and look forward to a new wave of studies using the various applications of intratumoral microorganisms in cancer therapy

    Giant liposarcoma of esophagus: a rare case report

    No full text
    Abstract Background Liposarcoma is a malignant mesenchymal tumor that most commonly involves the retroperitoneum and lower extremities. However, liposarcoma of esophagus has been rarely reported in the literature. Case presentation We report a case of a 46-year-old man with complaint of intermittent dysphagia for 6 years, accompanied with paroxysmal vomiting of pedicled tumor to the mouth. Imaging studies showed a huge mixed density lesion in the middle esophageal lumen. Surgical resection of the tumor was performed through an external cervical approach. Microscopically, the tumor was composed of mature adipocytes in normal adipose tissue prominently intersected by sparsely cellular fibrous septa containing atypical, enlarged spindle cells with hyperchromatic nuclei. Immunohistochemically, the tumor cells were positive for Vimentin, S-100, CD34 and MDM2. Besides, fluorescence in situ hybridization (FISH) analysis indicated the presence of amplification involving MDM2 gene. The patient was diagnosed as having esophageal well-differentiated liposarcoma and recovered well after the operation. Conclusions Esophageal liposarcoma is an extremely rare tumor. Due to the nonspecific clinical manifestation and lack of experience, it is challenging to make a clear diagnosis before operation. Definite diagnosis of esophageal liposarcoma depends on histopathology, immunohistochemistry and molecular analysis

    Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure

    No full text
    This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure

    The three-dimensional genome organization of Drosophila melanogaster through data integration

    No full text
    Abstract Background Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome’s organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Results Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Conclusions Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability

    HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    No full text
    Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR) pathological image enhancement method based on improved bias field correction and guided image filter (GIF). Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E) stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR) image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work
    corecore