4,448 research outputs found

    Dipolar-glass-like relaxor ferroelectric behaviour in the 0.5BaTiO3-0.5Bi(Mg1/2Ti1/2)O3 electroceramic

    Get PDF
    In this study, the dielectric and ferroelectric switching behaviour of 0.5BaTiO3-0.5Bi(Mg1/2Ti1/2)O3 (BT-BMT) ceramics are investigated. The BT-BMT ceramic exhibits a typical dipolar-glass-like, dielectric polarisation relaxation. This is attributed to the 15 distinct possible local A4B2 configurations around the O ions and the effect this unavoidable local compositional variability has on the dipole relaxation behaviour of inherent {1-D h111} dipole chains, arising from correlated off-centre displacements of Bi3+ and Ti4+ ions along local {111} directions. On the other hand, switchable polarisation under strong applied electric fields is observed on different length scales accompanied by the appearance of strong polarisation relaxation, as observed via time-delayed piezoresponse hysteresis loop measurements. These experimental results demonstrate that this BT-BMT ceramic is relaxor ferroelectric in nature, although it exhibits dipolar-glass-like dielectric relaxation behaviour.The authors J.W., Y.L., and R.L.W. acknowledge the support of the Australian Research Council (ARC) in the form of Discovery projects. Y.L. also appreciates support from the ARC Future Fellowships program

    (S,Z)-1-Chloro-3-[(3,4,5-trimeth­oxy­benzyl­idene)amino]­propan-2-ol

    Get PDF
    In the title compound, C13H18ClNO4, the two meth­oxy groups at the meta positions of the attached benzene ring are close to being coplanar with the ring [the meth­oxy C atoms deviate by 0.267 (7) and 0.059 (7) Å], whereas the third meth­oxy group at the para position is not coplanar with the benzene ring [methoxy C atom deviates by 1.100 (6) Å]. In the crystal, mol­ecules are linked into a chain along the a axis by O—H⋯N hydrogen bonds

    Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-κB/p65 activation

    Get PDF
    Stem cell survival post transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades of yeas. The engrafted stem cells face the damage of oxidative stress, inflammation and immune response at the lesion point in host. Among the pathology, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in detail mechanism of stem cell survival from oxidative stress has not revealed clearly. Here in this study, we used hydrogen peroxide (H2O2) to induced the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors respectively targeting at each signalling indicated an upper streaming role of HSP90 upon NF-κB/p65 on NSCs survival. Pre-inhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress, and also promotes the stem cell application on CNS pathologies

    Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF- κ

    Get PDF
    Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies

    Fully-inverted piezoresponse hysteresis loops mediated by charge injection in 0.29Pb(In1/2Nb1/2)O3–0.44Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystals

    No full text
    The domain structure and local switching behavior of ternary relaxor (001) 0.29Pb(In1/2Nb1/2)O3–0.44Pb(Mg1/3Nb2/3)O3–0.27PbTiO3single crystals are studied using piezoresponse force microscopy. The as-grown crystals exhibit a labyrinthine domain pattern similar to other relaxor-based ferroelectrics. Abnormally switched domains are observed for both positive and negative tip-voltages, with sign-dependent thresholds and growth rates on the poled crystals. Further piezoresponse hysteresis loop measurements show that fully inverted loops can be observed under high switching voltages, mediated by injected charge fields. The dynamic behavior of the observed abnormal switching is qualitatively analyzed and the underlying mechanisms discussed.Q.L., Y.L., and R.L.W. acknowledge financial support from the Australian Research Council ARC in the form of an ARC Discovery Grant No. DP0877069

    Abnormal static and dynamic functional network connectivity of the whole-brain in children with generalized tonic-clonic seizures

    Get PDF
    IntroductionGeneralized tonic-clonic seizures (GTCS) are a subtype of generalized seizures exhibiting bursts of bilaterally synchronous generalized spike-wave discharges. Numerous neuroimaging studies have reported aberrant functional activity and topological organization of brain network in epilepsy patients with GTCS, but most studies have focused on adults. However, the effect of GTCS on the spatial and temporal properties of brain function in children remains unclear. The present study aimed to explore whole-brain static (sFC) and dynamic functional connectivity (dFC) in children with GTCS.MethodsTwenty-three children with GTCS and 32 matched healthy controls (HCs) were recruited for the present study. Resting-state functional magnetic resonance imaging (MRI) data were collected for each subject. The group independent component analysis method was used to obtain independent components (ICs). Then, sFC and dFC methods were applied and the differences in functional connectivity (FC) were compared between the children with GTCS and the HCs. Additionally, we investigated the correlations between the dFC indicators and epilepsy duration.ResultsCompared to HCs, GTCS patients exhibited a significant decrease in sFC strengths among most networks. The K-means clustering method was implemented for dFC analysis, and the optimal number of clusters was estimated: two discrete connectivity configurations, State 1 (strong connection) and State 2 (weak connection). The decreased dFC mainly occurred in State 1, especially the dFC between the visual network (VIS) and somatomotor network (SMN); but the increased dFC mainly occurred in State 2 among most networks in GTCS children. In addition, GTCS children showed significantly shorter mean dwell time and lower fractional windows in stronger connected State 1, while GTCS children showed significantly longer mean dwell time in weaker connected State 2. In addition, the dFC properties, including mean dwell time and fractional windows, were significantly correlated with epilepsy duration.ConclusionOur results indicated that GTCS epilepsy not only alters the connectivity strength but also changes the temporal properties of connectivity in networks in the whole brain. These findings also emphasized the differences in sFC and dFC in children with GTCS. Combining sFC and dFC methods may provide more comprehensive understanding of the abnormal changes in brain architecture in children with GTCS

    Switching spectroscopic measurement of surface potentials on ferroelectric surfaces via an open-loop Kelvin probe force microscopy method

    No full text
    We report a method for switching spectroscopy Kelvin probe force microscopy (SS-KPFM). The method is established as a counterpart to switching spectroscopy piezoresponse force microscopy (SS-PFM) in Kelvin probe force microscopy. SS-KPFM yields quantitative information about the surface charge state during a local bias-induced polarization switching process, complementary to the electromechanical coupling properties probed via SS-PFM. Typical ferroelectric samples of a Pb-based relaxor single crystal and a BiFeO3 thin film were investigated using both methods. We briefly discuss the observed surfacecharging phenomena and their influence on the associated piezoresponse hysteresis loops.Q.L., Y.L., D.W., and R.L.W. acknowledge the support of the Australian Research Council (ARC) in the form of ARC Discovery Grants. Y.L. also acknowledges support from the ARC Future Fellowships Program
    • …
    corecore