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Introduction: Generalized tonic-clonic seizures (GTCS) are a subtype of

generalized seizures exhibiting bursts of bilaterally synchronous generalized

spike-wave discharges. Numerous neuroimaging studies have reported aberrant

functional activity and topological organization of brain network in epilepsy

patients with GTCS, but most studies have focused on adults. However, the effect

of GTCS on the spatial and temporal properties of brain function in children

remains unclear. The present study aimed to explore whole-brain static (sFC) and

dynamic functional connectivity (dFC) in children with GTCS.

Methods: Twenty-three children with GTCS and 32 matched healthy controls

(HCs) were recruited for the present study. Resting-state functional magnetic

resonance imaging (MRI) data were collected for each subject. The group

independent component analysis method was used to obtain independent

components (ICs). Then, sFC and dFC methods were applied and the differences

in functional connectivity (FC) were compared between the children with GTCS

and the HCs. Additionally, we investigated the correlations between the dFC

indicators and epilepsy duration.

Results: Compared to HCs, GTCS patients exhibited a significant decrease in

sFC strengths among most networks. The K-means clustering method was

implemented for dFC analysis, and the optimal number of clusters was estimated:

two discrete connectivity configurations, State 1 (strong connection) and State

2 (weak connection). The decreased dFC mainly occurred in State 1, especially

the dFC between the visual network (VIS) and somatomotor network (SMN); but

the increased dFC mainly occurred in State 2 among most networks in GTCS

children. In addition, GTCS children showed significantly shorter mean dwell time

and lower fractional windows in stronger connected State 1, while GTCS children

showed significantly longer mean dwell time in weaker connected State 2. In

addition, the dFC properties, including mean dwell time and fractional windows,

were significantly correlated with epilepsy duration.

Conclusion: Our results indicated that GTCS epilepsy not only alters the

connectivity strength but also changes the temporal properties of connectivity

in networks in the whole brain. These findings also emphasized the differences
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in sFC and dFC in children with GTCS. Combining sFC and dFC methods may

provide more comprehensive understanding of the abnormal changes in brain

architecture in children with GTCS.

KEYWORDS

generalized tonic-clonic seizure children, resting-state fMRI, independent component
analysis, static functional connectivity, dynamic functional connectivity

1. Introduction

Generalized tonic-clonic seizures (GTCS) are a subtype of
generalized seizures exhibiting bursts of bilaterally synchronous
generalized spike-wave discharges (2.5–5 Hz) (Ji et al., 2014).
During such seizures, patients usually exhibit symptoms of rigid
stiffening of the limbs, violent muscle contractions of the body,
and loss of consciousness (Zhang et al., 2011). People with
GTCS also show various cognitive impairments between seizures,
such as deficits in attention, memory, and executive function
(Paige and Cavanna, 2013). Additionally, patients with GTCS
do not exhibit focal anatomical brain lesions on routine MRI
scans. Because of these cognitive impairments and anatomical
characteristics, substantial effect has been made to understand the
neural mechanisms underlying GTCS (Zhang et al., 2011; Kim et al.,
2014; Wang et al., 2018; Allen et al., 2020; Li et al., 2020a).

Neuroscience research has indicated that epilepsy can be
regarded as a functional brain network disorder associated with
excessive synchronization of large neuronal populations (Engel
et al., 2013; Royer et al., 2022). It disrupts the balance between
excitatory and inhibitory activities (Fisher et al., 2017a). With
the development of non-invasive functional magnetic resonance
imaging (fMRI) techniques, considerable progress has been made
in understanding the neurological pathogenesis of GTCS. Previous
high-resolution structural image analysis of GTCS patients have
revealed widespread and subtle anatomical abnormalities in
cortical and subcortical regions (Huang et al., 2011; Kim et al.,
2013; Zhou et al., 2015; Liao et al., 2016; Ke et al., 2017). These
abnormalities were mainly located in the thalamus, hippocampus,
cingulate cortex, cerebellum, and frontal lobe (Ciumas and Savic,
2006; Huang et al., 2011; Zhou et al., 2015; Allen et al., 2020). The
abnormal discharges of GTCS not only alter brain morphometry
but also affect intrinsic brain activity and large-scale brain network
properties in the interictal period. Resting-state fMRI studies of
GTCS patients have revealed abnormal intrinsic brain activity and
interhemispheric communication in the thalamus, temporal pole,
angular gyrus and prefrontal cortex (Zhong et al., 2011; Ji et al.,
2014; Wang et al., 2014; Yang et al., 2014; Wang et al., 2018). From
the perspective that epilepsy represents a brain network disorder,
the functional and structural brain has alterations have also been
studied with the graph theory approach in both adults (Zhang et al.,
2011; Liao et al., 2013; Li et al., 2016) and children (Li et al., 2020a,b,
2022b) with GTCS.

Moreover, resting-state fMRI has become a popular technique
for studying epilepsy. This technique provides an effective way
to quantify the intrinsic functional organization of the brain. To
assess functional connectivity (FC), interregional synchronization

is examined by measuring the correlation of brain signals in
resting-state fMRI data. Given that the association of epilepsy
with abnormal FC in several resting-state networks has gained
widespread acceptance (Tracy and Doucet, 2015; Royer et al., 2022),
there is growing research interest in detecting the changes in FC of
resting-state fMRI data in GTCS patients (Wang et al., 2011; Kim
et al., 2014; Ke et al., 2017; Li et al., 2017; Wang et al., 2019; Hsieh
et al., 2022). For example, one recent study using the seed-based FC
method revealed decreased FC of the cingulated cortex in GTCS
patients (Ke et al., 2017). The abnormalities in FC might be related
to the decreased volume of the cingulate cortex. Recent resting-
state fMRI studies have reported altered FC in the default mode
network (DMN), thalamocortical network, sensorimotor network
(SMN), and ventral attention network (VAN) (Wang et al., 2011;
Wang et al., 2019; Li et al., 2020a). In particular, the DMN showed
more significantly and frequently altered FC than other resting state
networks in GTCS epilepsy patients (Song et al., 2011; Parsons
et al., 2020). Overall, these previous reports examined the changes
in network FC of patients with GTCS, which may be related to
clinically relevant phenomena.

Notably, the aforementioned functional imaging studies have
employed static FC (sFC) to investigate the intrinsic brain
architecture, which assumes that there is no fluctuation of brain
signals throughout the entire scan. Even though sFC has been
used successfully to determine brain abnormalities in GTCS, this
method overlooks the temporal properties of FC. Recent studies
have proven that brain FC in the resting state is indeed dynamic
(Fox et al., 2005; Rolls et al., 2021). Since 2010, dynamic FC (dFC)
methods have been developed to examine time-varying network
connectivity in resting-state fMRI data (Chang and Glover, 2010;
Allen et al., 2014). The advantages of this methodology have been
demonstrated in recent studies, and this method has been applied
in epilepsy research (Liu et al., 2017; Jia et al., 2020; Kowalczyk
et al., 2020; Yang et al., 2021). For instance, a dFC study in GTCS
patients demonstrated that adult patients had state-specific dFC
disruptions and significant changes in temporal metrics (Liu et al.,
2017). The majority of aberrant dFC was in the DMN, as confirmed
by a recent study that reported that general DMN abnormalities
were found across epilepsy types (Yang et al., 2021). Another dFC
study on GTCS patients also found that adult patients showed
increased variability of FC in regions of the DMN, VAN, and motor-
related areas (Jia et al., 2020). FC variability between the DMN
and cognition-related networks showed a significant increase. In
our previous studies, we applied the dFC method in children
with GTCS to explore FC characteristics of specific networks (Li
et al., 2022a,c). Children with GTCS showed both an increase
and decrease in dFC within the DMN and the thalamocortical
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network. Although these previous studies demonstrated significant
brain abnormalities in terms of activity and connectivity patterns
in GTCS patients, most of these previous studies were conducted
in adults. Only a few studies have focused on neuroimaging
changes in children with GTCS. Comparing the neuroimaging
results among these previous studies, we observed that the main
findings are not fully consistent between children and adults with
GTCS (Song et al., 2011; Li et al., 2016, 2020a, 2022a; Liu et al.,
2017). Children with GTCS have shown some specific changes
in their brain activity and topological properties of their brain
network compared with adult patients. In addition, the brain’s
dynamic activity changes during the resting state in children
with GTCS mainly occurred in the DMN or thalamocortical
network (Li et al., 2022a,c). The dynamic interaction among whole-
brain functional networks in children with GTCS is still unclear.
Investigation of whole-brain dFC would help to fully capture
the functional abnormalities and to provide more important
information about the neural mechanisms underlying GTCS in
children.

To fully explore abnormalities in brain functional network
connectivity in children with GTCS, resting-state fMRI was used
in the present study to evaluate the sFC and dFC of whole-brain
networks. Our hypotheses were as follows: (1) children with GTCS
would show abnormal sFC and dFC of the whole brain network and
(2) altered dFC would provide more information than sFC, and the
temporal properties of dFC would correlate with epilepsy duration.

2. Materials and methods

2.1. Subjects

Twenty-three children with GTCS (10 females and 13 males,
mean age: 68.20 ± 45.22 months) were recruited from Shenzhen
Children’s Hospital. All patients with epilepsy were diagnosed with
GTCS based on seizure symptoms and scalp-EEG information,
consistent with the current International League Against Epilepsy
seizure type classifications (Fisher et al., 2017b). Patients were
included in the study based on the following criteria: (1)
exhibiting typical clinical symptoms of GTCS, such as limb
movement, loss of consciousness during seizures, and no partial
seizures; (2) exhibiting specific patterns of electrophysiological
activity recorded by electroencephalography (generalized spike-
and-wave or poly-spike-wave discharges); and (3) not exhibiting
abnormalities on a diagnostic MRI. Each patient was treated with
at least one antiepileptic drug, including topiramate, valproic acid,
oxcarbazepine, and/or levetiracetam. All patients were seizure-free
for at least 2 days before the MRI examination. In addition, thirty-
two healthy controls (HCs, 10 females, and 22 males, mean age:
75.30 ± 29.77 months) were recruited. All HCs were interviewed to
confirm that they did not have a history of neurological disorders
or psychiatric illnesses. During the MRI scan, participants under
the age of 4 years were sedated with 10% chloral hydrate to reduce
their head movement and enhance the success rate of imaging
acquisition (dosage: 50 mg/kg, maximum dose of 1 g). Fifteen
participants (9 patients and 6 HCs) in this study were under 4 years
of age. The demographic and clinical characteristics of patients and
HCs are presented in Table 1.

This study was approved by the Ethical Committee of Shenzhen
Children’s Hospital. Written informed consent was obtained from
each participant’s parents or legal guardians after the explanation
of the study purpose, procedures, possible risks, and discomforts
and before imaging.

2.2. Data acquisition

MRI data were acquired on a German Siemens Trio Tim
3.0T scanner (MAGNETOM, Germany) with an 8-channel head
coil at Shenzhen Children’s Hospital, Shenzhen, China. Foam
padding and earplugs were used to minimize head movements and
machine noise for all subjects. High-resolution structural three-
dimensional (3D) T1-weighted images were obtained using the
MPRAGE sequence to cover the entire brain for all subjects:
repetition time (TR) = 2,300 ms, echo time (TE) = 2.26 ms, field
of view (FOV) = 200 × 256 mm2, acquisition matrix = 200 × 256,
160 sagittal slices, slice thickness = 1 mm, and flip angle = 8◦.
Resting-state functional MRI were acquired for each subject using
an echo-planar imaging sequence with the following parameters:
TR = 2,000 ms, TE = 30 ms, FOV = 220 × 220 mm2, matrix
size = 94 × 94, slice thickness = 3 mm, flip angle = 90◦, number
of total volumes = 130, and 36 interleaved axial slices covering
the entire brain. During data acquisition, the participants over
the age of four were instructed to hold still, close their eyes,
avoid thinking about anything in particular, and not fall asleep. To
prevent these participants from falling asleep, we observed them
throughout the whole scanning process and confirmed that they
were awake immediately after image scanning. During the scanning
process, T1 images were collected first, and then the resting-state
image were collected. During the whole data collection process, no
patient had a seizure.

2.3. Data preprocessing

The resting-state fMRI data preprocessing was performed using
the data assistant software DPABI (Yan et al., 2016). The initial
10 functional images of each subject were discarded to ensure
magnetization equilibrium. Subsequently, the remaining volumes
were corrected according to the acquisition time delay among
different slices and realigned to the first volume to correct for
head motion. Excessive motion was defined as more than 3 mm of
translation or greater than a 3◦ rotation in any direction. The mean
framewise displacement (FD) was computed by averaging the FD
of each participant across the time points. The participants were
excluded if the mean FD excluded 0.5 mm or more than 20% of
all-time points had FD values exceeding 0.5 mm. No participant
was excluded due to excessive motion or excessive FD. Then the
mean FD values for all participants were compared between the
patients and HCs. No significant differences were found between
groups in terms of FD values (GTCS: 0.15 ± 0.09, HC: 0.14 ± 0.12,
T = 0.35, p = 0.73). Subsequently, each subject’s 3D T1-weighted
structural images were coregistered to their mean functional images
by rigid body transformation. Then, the transformed structural
images were segmented by using a unified segmentation algorithm
and normalized to Montreal Neurological Institute space by using
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TABLE 1 Demographic and clinical information data of the subjects.

Characteristics Patient group (Mean ± SD) Control group (Mean ± SD) Comparisons

Gender (female/male) 10/13 10/22 X2 = 0.86 (p = 0.35)

Age (month) 68.20 ± 45.22 75.30 ± 29.77 t = 0.60 (p = 0.55)

Epilepsy duration (month) 35.65 ± 36.21 \

a 12-parameter non-linear transformation. The transformation
parameters were applied to the functional images, and they were
resampled to a 3 mm isotropic voxel. The functional images were
spatially smoothed with a Gaussian kernel of 6 mm full-width at
half maximum.

2.4. Group independent component
analysis

Group spatial independent component analysis (ICA) was
adopted to decompose all preprocessed resting-state data into
independent components (ICs) using GIFT software1 (Calhoun
et al., 2001). Group spatial ICA is a data-driven approach
that consists of three stages: dimensionality reduction, IC
estimation, and back reconstruction. The preprocessed data from
all participants were concatenated into a single dataset. Data
reduction involving principal component analysis was conducted
to reduce the dimensions of the functional data. ICA was performed
to decompose the grouped data into 26 independent components
using an Infomax algorithm. This step was repeated 20 times using
the ICASSO algorithm to assess the repeatability or stability of
ICs. Aggregate spatial maps were estimated as the modes of the
component clusters. ICs and time courses for each participant were
back-reconstructed. Through back-reconstruction, the individual
time courses and spatial maps were obtained.

A systematic procedure was used to diagnose the artifacts and
identify the functional networks. We used the cortical parcellation
maps of the Yeo2011 resting state network2 as a template and
multiple linear regression as implemented in the spatial sorting
function of GIFT, to compare the spatial pattern of each IC
with these templates. The functional module of “Component
Labeller” in the GIFT toolbox was used to produce a txt file
containing a correlation index. Components that had a higher
correlation coefficients (larger than 0.2) with these maps of
Yeo2011 templates were considered the most related components.
The reason for selecting this correlation criterion was based on
previous references, in which a reasonable choice of correlation
coefficients was studied between ICs from different datasets (Smith
et al., 2009; Segall et al., 2012). Previous studies have verified that
this threshold can conservatively represent a significance level of
p < 0.005, corrected (Smith et al., 2009). Some components were
excluded from the remainder of the analysis because they were
correlated with motion artifacts or spatial maps that included white
matter, the ventricular system, or cerebral spinal fluid or because
they had irregular time course spectral power. Among the 26 ICs,
20 ICs were acquired by the above process and categorized into
seven functional subnetworks based on the Yeo2011 template: the

1 http://mialab.mrn.org/software/gift

2 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011

visual network (VIS), SMN, dorsal attention network (DAN), VAN,
limbic network (Lim), frontoparietal network (FPN) and DMN (see
Figure 1). The subsequent steps were applied to the time courses
of these 20 meaningful components to remove physiological and
scanner noise: linear detrending, reducing the influence of the
Friston 24 realignment parameters using regression and filtering
(with a bandpass filter of 0.01–0.1 Hz) (Cordes et al., 2001).

2.5. Static functional connectivity
analysis

To estimate static FC between the meaningful ICs, the mean
time course was first computed by averaging the blood oxygen
level-dependent signals over all the voxels within each IC. The
correlations of the mean time courses were then computed
(Pearson correlation). To normalize the variance in the correlation
values, all the resulting correlation coefficients were transformed
into a z-score using Fisher’s z-transformation. The normalized
correlation values of each pair were regarded as the network edges.
A 20 × 20 correlation matrix was generated for each subject.

Then, we used a general linear model with age and sex as
nuisance covariates to determine which pair of ICs was significantly

FIGURE 1

Spatial maps of the 20 independent components grouped into
seven different functional domains. Abbreviated labels denote the
following networks: Vis, visual network; SMN, somatomotor
network; DAN, dorsal attention network; VAN, ventral attention
network; Lim, limbic network; FPN, frontoparietal network; DMN,
default mode network.
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different between the groups. The significance threshold was set
at p < 0.01 to address multiple comparisons in the functional
connectivity analysis.

2.6. Dynamic functional connectivity
analysis

The dFC analysis was performed using a sliding time-window
approach in the Dynamic BC toolbox (Liao et al., 2014) (V2.23).
The rectangle sliding window size was set to a width of 30 TRs,
with a step of 1 TR, resulting in 90 overlapping windows per
subject. After that, a k-means clustering algorithm was performed
on the windowed correlation matrices from all windows to assess
patterns of functional connectivity that reoccurred over time across
different participants. We determined the optimal value of k by
using the silhouette algorithm. Clustering numbers from 2 to 10
were selected to represent the cluster states. Random initializations
were also used in this process to obtain the state cluster centroids.
According to the above process, the optimal clustering number was
two, namely, State 1 and State 2. The FC matrices of all participants
were thus classified into 2 states according to their similarity to the
cluster centroids. State transition vectors of all participants across
time windows were also derived. For the visualization of the group-
specific cluster centroids of the GTCS group and HC group, we
also calculated the group-specific cluster centroids by averaging the
subject-specific centroids of each group. A two-sample t-test was
used to compare the connectivity strength of each state (p < 0.01)
between the HCs and GTCS groups.

Subsequently, the state transition vectors were used to calculate
the temporal properties of dFC states: mean dwell time (MDT),
fraction of time spent, and number of transitions. The MDT
is calculated by averaging the number of consecutive windows
belonging to one state, which represents the average duration of
time intervals spent in each state. The “fraction of time spent” in
each state index is measured as the percentage of time spent in each
state out of total time. The “number of transitions” is defined as the
number of times subjects switch between different states. Figure 2
shows the schematic diagram of the analysis pipeline. To verify the
stability of the dFC results, we also selected a sliding window with a
size of 40 TRs and repeated the above analysis. Similar results were
obtained by using different window lengths (see Supplementary
material). Supplementary Figures 1–3 showed the dFC results
of the window length of 40 TRs. Regarding group differences in
temporal properties of the dFC state, the significance of group
differences in mean dwell time, fraction of time spent, and number
of transitions were examined using a two-sample t-test (p < 0.05)
after controlling for age and sex.

2.7. Correlation analysis of the
relationship between image indices and
clinical characteristics

We further calculated the brain-behavior relationships in the
patient group. Pearson’s correlation analyses were performed to

3 www.restfmri.net/forum/DynamicBC

FIGURE 2

Schematic diagram of the analysis procedure. Resting-state fMRI
data were preprocessed and subjected to group spatial ICA
resulting in 20 IC networks. Static FC was then estimated. To
estimate dFC, a sliding window approach was employed to obtain
the subject-specific windowed dFC matrices. K-means clustering
was applied to the correlation matrices of all subjects to obtain 2
cluster states. Based on these two states, the state transition vector
and dFC strength were obtained for each subject in different states.

examine the relationship between the temporal properties of
FC states (dwell time, fraction of time spent, and number of
transitions) and patient clinical characteristics (epilepsy duration).
A threshold of p < 0.05 was recognized as statistically significant.
During the comparison process, age and sex were controlled.

3. Results

3.1. Demographic characteristics

The detailed demographic and clinical characteristics of both
groups are summarized in Table 1. There were no significant
differences between the GTCS patients and HCs in terms of age
or sex distribution. Furthermore, information on epilepsy duration
was also collected and is listed in Table 1.

3.2. Static functional connectivity
analysis

After group ICA, we grouped these meaningful ICs into seven
functional networks based on the Yeo2011 template, namely, the
VIS (6 ICs), SMN (3 ICs), DAN (2 ICs), VAN (2 ICs), LIM
(1 IC), FPN (2 ICs) and DMN (4 ICs). Detailed spatial maps
of ICs identified with group ICA were shown in Figure 1. The
results of altered static FC in children with GTCS are shown in
Figure 3. Compared with HCs, children with GTCS exhibited
significantly decreased static FC between the following networks:
VIS-SMN, VIS-DMN, VIS-FPN, VIS-DAN, FPN-SMN, DMN-
Lim, and VAN-SMN.
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FIGURE 3

The difference in static functional network connectivity between
the two groups in seven functional networks. Compared with the
HCs, children with GTCS showed a significant decrease in static FC
among the seven functional networks. The thickness of the lines
represents the magnitude of FC difference between the two groups.

3.3. Dynamic functional connectivity
state analysis

To examine the recurring patterns of dFC, we identified two
patterns of functional connectivity states (State 1 and State 2)
that recurred during individual scans and across subjects using a
k-means clustering method. These two matrices reflected different
interregional connectivity patterns of the two states (Figure 4).
State 1 with fewer time windows (37.29%) was mainly characterized
by strong positive interregional interactions. State 2 with more
frequent time windows (62.71%) was mostly characterized by
low dFC.

Figures 5A, B demonstrate state- and group-specific cluster
centroids obtained by the k-means cluster analysis. In State 1,
compared to HCs, GTCS children showed weaker dFC strengths
between the following networks: VIS-SMN, VIS-VAN, and VIS-
FPN. In State 2, GTCS children exhibited stronger dFC strengths
primarily between the following networks: VIS-DMN, VIS-DAN,
VIS-FPN, DMN-VAN, DMN-DAN, FPN-VAN, and Lim-DAN.

We found a significant group difference in fractional windows
(p < 0.05), which suggests that children with GTCS exhibited an
abnormal proportion of time spent in each state compared to HCs
(Figure 6A). In HCs, the total occurrences of State 2 (0.57 ± 0.42)
were more frequently observed than State 1 (0.43 ± 0.42). In the
patient group, State 1 occurred less frequently (0.23 ± 0.32), and
State 2 occurred at a higher rate (0.77 ± 0.32). Thus, in children
with GTCS, State 1 occurrence dropped by 0.2, while State 2
presentation increased by 0.2.

As shown in Figure 6B, significant group differences were
identified in the MDT of State 1. The MDT in State 1 was
significantly shorter in children with GTCS than in healthy controls
(HCs: 28.36 ± 33.92, GTCS: 12.55 ± 21.90, p = 0.044). This result
implied that children with GTCS spent less time in the state with

higher connectivity. The MDT in State 2 was higher in children
with GTCS but not at significant levels (HCs: 43.42 ± 39.03,
GTCS: 52.26 ± 35.93, p = 0.403). As shown in Figure 6C, no
group differences were found in terms of the number of transitions
between states (HCs: 1.59 ± 2.21, GTCS: 2.05 ± 2.52, p = 0.492).

3.4. Relationship between dFC properties
and epilepsy duration

Correlation analyses were carried out to test whether dFC
properties were associated with epilepsy duration in children with
GTCS. Notably, we found that the fraction of time spent in State
1 was positively correlated with epilepsy duration (Figure 7A,
r = 0.51, p = 0.016). In contrast, the fraction of time spent in
State 2 was negatively correlated with epilepsy duration (Figure 7B,
r = −0.51, p = 0.016). Furthermore, the MDT in State 1 was
positively correlated with epilepsy duration (Figure 7C, r = 0.67,
p = 0.001). Additionally, we found negative (but not significant)
associations between the MDT in State 2 and epilepsy duration
(Figure 7D, r = −0.38, p = 0.08).

4. Discussion

Recently, dFC has increasingly been applied in the study of
epilepsy to capture time-varying properties. In this study, we
employed resting-state fMRI with ICA, sFC, and dFC analysis to
investigate alterations in whole-brain networks in children with
GTCS. Our analysis revealed the following: (1) Both the sFC and
dFC of the GTCS children’s whole-brain network were changed
significantly. (2) We compared the sFC and dFC profiles and
found that there was a shared decrease in connectivity across
both methods and some specific connections by each method.
Interestingly, children with GTCS showed a significant increase in
their dFC between the subnetworks in State 2 only. (3) Regarding
the dynamic properties of the functional brain network, children
with GTCS had fewer occurrences and a shorter MDT in State
1 and more occurrences and a longer MDT in State 2. These
changes in dFC properties were linked to epilepsy duration. In
summary, these results may support the hypothesis that children
with GTCS exhibit temporal variability in whole-brain network
connectivity. Combining the sFC and dFC methods might provide
more valuable information regarding the neural mechanism and
possible neuroimaging biomarkers of clinical diagnoses in children
with GTCS epilepsy.

4.1. Group differences in sFC analysis
between the whole-brain subnetworks

Epilepsy is considered to disrupt neural networks (Royer et al.,
2022). Compared to HCs, children with GTCS exhibited significant
abnormal sFC among resting-state subnetworks. Our results
showed that the decreased sFC of GTCS children mainly affected
internetwork connectivity among the VIS, SMN, DMN, FPN, Lim,
and VAN. The SMN is a motor network that is also integrated
into a multimodal network associated with motor systems and
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FIGURE 4

Dynamic functional network connectivity states were identified by clustering analysis. (A) The two cluster centroids from all sliding time windows of
all subjects are shown along with the percentage of occurrences, which reflects different interregional connectivity patterns in the two states: the
State 1 with fewer time windows (37.29%) was mainly characterized by strong interactions and the State 2 with more time windows (62.71%) was
mainly characterized by weak interactions. (B) In each state, the top 5% of strong connections of each state were retained and are shown in the
circular maps.

cognitive hub regions (Sepulcre et al., 2012). The FPN is highly
integrated with other brain networks associated with cognitive
control, providing a functional backbone for rapid and flexible
modulation of other brain networks (Marek and Dosenbach, 2018).
The DMN is the most important brain network for the modulation
of internal mentation and external cognitive processes (Raichle
et al., 2001). It has been reported that temporal lobe epilepsy
patients showed slower spreading time in FPN, Lim, DMN, and
subcortical networks with impairment in sensorimotor, executive,
and memory functions (Girardi-Schappo et al., 2021). Whole-brain
network dysfunction may contribute to cognitive impairments in
epilepsy patients. In patients with idiopathic generalized epilepsy,
significant decreases in sFC of the bilateral medial prefrontal cortex
and precuneus/posterior cingulate cortex were observed (Kim et al.,
2014). Altered thalamocortical functional connectivity may be the
long-term consequence of epilepsy (Wang et al., 2012). All these
previous studies showed that inter-network connectivity patterns
may be important in maintaining normal cognitive functions.
A possible explanation of cognitive impairment in patients with
epilepsy may be related to the impaired functional integrations
between these subnetworks. In the present study, the sFC among

the FPN, SMN, DMN, and VIS showed a significant decrease.
These results are consistent with the main results of previous
studies on epilepsy patients and indicate that the pathway of visual
information projections from the visual cortex to the FPN and SMN
may be inhibited in epilepsy patients. We also observed a significant
decrease in the sFC between the DMN and other subnetworks (the
SMN, Lim, and VIS). Considering the important role of the DMN
in the brain, a reduction in connectivity strength between the DMN
and other subnetworks may imply that information transmission
and efficiency are suppressed in children with GTCS. Based on
graph theory analysis, previous studies have reported that patients
with GTCS exhibit significant reductions in rich-club connectivity
among central hubs (Li et al., 2016). Long-term damage due
to epilepsy may disrupt rich-club organization. As a result,
GTCS patients showed reduced brain integration among different
functional domains. Another perspective that main explain the
significant decrease in sFC in children with GTCS may be altered
functional-structural coupling of large-scale brain networks in
GTCS patients (Zhang et al., 2011; Liao et al., 2013; Liao et al.,
2016). Previous neuroimaging studies have reported widespread
and subtle changes in gray matter volume (Ciumas and Savic, 2006;
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FIGURE 5

Functional connectivity results in each state. (A) Group centroid metrics for each state. (B) Children with GTCS had weaker dFC pathways in State 1
and stronger dFC pathways in State 2 than the HC group.

FIGURE 6

Temporal properties of the dynamic states. (A) The mean fractional properties spent in each state differed between the groups. (B) The mean
dwelling time in State 1 was shorter in GTCS children than in controls. (C) The number of transitions between the two groups. *P < 0.05, GTCS,
generalized tonic-clonic seizures children; HC, healthy control.

Allen et al., 2020). Long-term and progressive remodeling of the
brain structure in patients with GTCS may induce changes in
the brain’s functional architecture given the relationship between
function and structure. Based on the above discussion, the
observations in the present study may indicate abnormal functional
relationship among these subnetworks in child patients. GTCS
could mainly impact internetwork communications in children.

Regarding the sFC results, we should note that no significant
increases in sFC were detected in children with GTCS. This
result is not consistent with that of previous studies on adult
patients with GTCS. A previous study using a similar method
found that adults with GTCS demonstrated a significant increase

in the sFC among the DMN, FPN, and attention network (Wei
et al., 2015). A recent study in patients with generalized epilepsy
also showed both an increase and decrease in activation patterns
among the DMN, motor cortex, and attention network (Klamer
et al., 2018). The possible reason for the above inconsistency
may be the difference in the age of the research subjects. These
previous studies focused on adults with GTCS. In the present
study, we focused on the changes in FC patterns in children
with GTCS. Chronic epilepsy may disrupt brain organization and
normal brain development in children with GTCS. As a result,
abnormal functional connectivity among whole-brain subnetworks
may stem from the combined effects of epileptic seizures and brain
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FIGURE 7

Correlation between the temporal properties of dFC and epilepsy duration in GTCS children. (A) The fraction of time spent in State 1 was positively
correlated with epilepsy duration. (B) The fraction of time spent in State 2 was negatively correlated with epilepsy duration. (C) The mean dwell time
in State 1 was positively correlated with epilepsy duration. (D) The mean dwell time in State 2 was not significantly correlated with epilepsy duration.

development. Children with GTCS exhibited a specific difference
in connectivity patterns compared with those of adult patients. Our
previous research on children with GTCS also showed a significant
decrease in connectivity of the thalamocortical network (Li et al.,
2022c) and a significant decrease in spontaneous brain activity
in the bilateral angular gyrus, left inferior, and middle temporal
gyrus (Wang et al., 2018). Thus, the sFC among the whole-brain
subnetworks in the present study further confirmed the view that
children with GTCS show a specific connectivity pattern.

4.2. Group differences in dFC analysis
among the whole-brain subnetworks

Although we did not detect a significant increase in brain
connectivity with the sFC method, investigating the functional

interactions between the resting-state networks in terms of dFC
provided additional information regarding the neural mechanism
of GTCS in the present study (specifically, we observed both
increases and decreases in connectivity). Recently, the dynamic
functional brain connectome has been recognized as a novel
approach to tracking the dynamics of the mental state (Chang and
Glover, 2010; Allen et al., 2014). In addition to sFC, we investigated
brain abnormalities in functional network by the dFC method. Two
recurring states were identified in the functional MRI scan. State
1 was characterized by hyperconnectivity across the whole brain.
State 2 was characterized by weak connections across most brain
networks. In each state, children with GTCS showed significant
differences in dFC strength compared with HCs. In State 1, children
with GTCS showed a significant decrease in the dFC strength
between the VIS and other cognitive networks (the FPN and
SMN). The change direction of dFC and the main networks with
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altered dFC in State 1 were consistent with the sFC results. Both
sFC and dFC decreases in inter-network connectivity may reflect
the chronic effect of epilepsy on brain functional organization in
children with GTCS.

Another main finding regarding altered connectivity in the
present study was that inter-network connections between most
subnetworks showed a significant increase in the dFC in State 2.
As shown in Figure 5B, significant between-group dFC differences
in State 2 were observed among several subnetworks including the
DMN, DAN, VAN, Lim, FPN, and VIS. Attention is the basis for
higher cognition. Both the DAN and VAN are part of the attention
system. The DAN mediates top-down attention, and the VAN
mediates bottom-up attention. Our results showed that the dFC
strengths between attention networks and cognitive networks (the
FPN and VIS) were significantly enhanced in children with GTCS
in State 2. Regarding attention networks, previous studies have
shown that seizure activity in epilepsy may disturb brain networks
and damage brain areas associated with attention (Jiang et al., 2018;
Wu et al., 2021). Damage to the attention network may suppress
the ability to disengage from the current target of attention.
As a result, attention is impaired in children with epilepsy,
and the connectivity of attention-related networks is disrupted.
To achieve the same cognitive performance as HCs, epilepsy
patients need to devote more resources (or pay more attention)
to information transmission in attention networks regarding the
external environment. Thus, inter-network connectivity (between
the attention networks and FPN/VIS) showed a significant increase
in children with GTCS.

It is worth noting that the increased inter-network connectivity
in State 2 was mainly related to the DMN (DMN vs. VAN,
DMN vs. DAN, DMN vs. VIS). The DMN has been confirmed to
integrate information from primary sensory areas and cognitive
networks (Buckner and DiNicola, 2019). Previous studies in
patients with GTCS have frequently reported a decrease in the
connective patterns within the DMN and an increase in the
connective patterns between the DMN and the other cognitive
networks (Li et al., 2020a, 2022a; Parsons et al., 2020). In
addition, a previous study found a significant increase in the
dFC strengths between the DMN and VIS (Liu et al., 2017).
Recently, increased FC variabilities were also detected between
the DMN and cognition-related networks (the VAN, DAN,
and FPN) in GTCS (Jia et al., 2020). These inter-networks
results might lead to functional confusion of the task-negative
(DMN) and task-positive networks (the VAN, DAN, FPN).
Our dFC results in State 2 are consistent with these previous
reports and indicated that disruption of whole-brain information
transmission is associated with cognitive impairments in patients
with GTCS.

Comparison of the sFC and dFC results revealed that the
decreased inter-network connections were shared by both methods,
but the increased inter-network connections were only detected
by the dFC method. The reason for this may be that sFC
represents of the average connectivity across different dynamic
states throughout the whole scanning period but does not reflect
the time-dependent and dynamic nature of brain activity. The
dynamic FC method may be more sensitive than the sFC
method to capture the between-group alteration (Rolls et al.,
2021). The findings of the present study further confirm that
the dFC approach can provide additional information concerning

the brain’s functional organization in epilepsy patients. The
present results indicate that combining the sFC and dFC can
provide complementary information regarding brain organization
in children with GTCS.

The present findings demonstrated that inter-network dFC
between subnetworks in children with GTCS showed a significant
increase in State 2 and a decrease in State 1 as compared
to the control group. Such direction of change are consistent
with previous findings that children with GTCS showed both
an increase and decrease in dFC strength of some specific
networks (Li et al., 2022a,c). However, previous studies on adults
with GTCS only detected increased FC variabilities between the
DMN and cognition-related networks (Jia et al., 2020; Yang
et al., 2021). A possible explanation for the inconsistency in
results between the present study and previous studies in adults
with GTCS may be the differences in the research subjects.
Previous studies have demonstrated that children with GTCS
showed a different brain organization than adults with GTCS
(Li et al., 2016, 2017, 2020a; Liu et al., 2017). In addition
to epilepsy seizures, brain development may play a greater
role in children with epilepsy than in adults with epilepsy.
The above explanations should be examined in future studies
with improved designs, including both adults and children
with GTCS.

4.3. Significant correlations between dFC
properties and epilepsy duration in
children with GTCS

Regarding the temporal properties, (dwell time and fractional
windows), both decreased significantly in State 1 and increased
significantly in State 2 in children with GTCS. High connectivity
and short mean dwell time were detected in State 1 and low
connectivity and long mean dwell time were detected in State
2. The changes in the directions of these dFC properties are
consistent with previous dingings in patients with GTCS (Liu
et al., 2017; Li et al., 2022a). We speculated that the opposite
changes observed in the temporal properties of the two states might
lead to disrupted communication among resting-state networks.
And also, there were significant correlations between these two
properties and epilepsy duration in both states. Previous studies
on epilepsy patients have found that brain functional organization,
such as dFC variability and dFC temporal properties, can be
affected by epilepsy duration (Jia et al., 2020; Li et al., 2022a).
These present correlation findings emphasized the importance of
epilepsy duration for the brain’s functional architecture. Dynamic
FC analyses could yield additional information regarding GTCS
in children.

4.4. Limitations

Our study also has several limitations. First, the sample size
was relatively small, with just 55 participants (23 patients and 32
HCs), although this size was sufficient for the statistical analyses.
A larger sample size, especially more patients, should be used
in future studies to investigate the replicability of the present
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findings. Second, this study was a cross-sectional study, which
prevents determination of causality in the relationship between
FC alterations and disease progression. Future studies should used
a longitudinal design to examine this relationship. Third, the
present study focused on gray matter signals. The signals within
the white matter were excluded. A recent study found that the
resting-state fMRI signals in white matter may also vary with
physiological states (Basile et al., 2022). Future studies should take
white matter signals into account in epilepsy patients. Fourth,
all children with GTCS were medicated in the present study.
Using antiepileptic drugs can affect normal neuronal function and
induce cognitive impairment in children (Ijff and Aldenkamp,
2013). Future studies should consider the effect of antiepileptic
drugs on brain connectivity in children with GTCS. Finally, some
children under the age of 4 years were sedated during image
collection, and sedative use may also affect brain connectivity.
Future studies are needed to clarify the effect of sedative drugs on
brain connectivity.

5. Conclusion

In the present study, we employed ICA, sFC, and dFC analyses
of resting-state fMRI data to investigate the alterations in whole-
brain networks in children with GTCS. Both the sFC and dFC
of the whole-brain networks in children with GTCS showed
significant changes. In particular, both increase and decrease in
dFC were detected among whole-brain resting-state networks,
while decreased sFC was observed. There was temporal variability
in brain network connectivity in children with GTCS. We also
found significant correlations between the temporal properties of
dFC and epilepsy durations. These results demonstrated significant
alterations in connectivity strength and temporal properties of
dFC in the whole-brain network in children with GTCS. These
findings can enhance understanding of the neural mechanisms
underlying GTCS in children. This study further confirms
that investigating brain functional architectures from static and
dynamic perspectives can provide more comprehensive insight
into the abnormal changes in brain network connectivity in
children with epilepsy.
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