12,955 research outputs found

    Recent progress on weight distributions of cyclic codes over finite fields

    Get PDF
    Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. In coding theory it is often desirable to know the weight distribution of a cyclic code to estimate the error correcting capability and error probability. In this paper, we present the recent progress on the weight distributions of cyclic codes over finite fields, which had been determined by exponential sums. The cyclic codes with few weights which are very useful are discussed and their existence conditions are listed. Furthermore, we discuss the more general case of constacyclic codes and give some equivalences to characterize their weight distributions

    Coherent laser control of the current through molecular junctions

    Full text link
    The electron tunneling through a molecular junction modeled by a single site weakly coupled to two leads is studied in the presence of a time-dependent external field using a master equation approach. In the case of small bias voltages and high carrier frequencies of the external field, we observe the phenomenon of coherent destruction of tunneling, i.e. the current through the molecular junction vanishes completely for certain parameters of the external field. In previous studies the tunneling within isolated and open multi-site systems was suppressed; it is shown here that the tunneling between a single site and electronic reservoirs, i.e. the leads, can be suppressed as well. For larger bias voltages the current does not vanish any more since further tunneling channels participate in the electron conduction and we also observe photon-assisted tunneling which leads to steps in the current-voltage characteristics. The described phenomena are demonstrated not only for monochromatic fields but also for laser pulses and therefore could be used for ultrafast optical switching of the current through molecular junctions.Comment: 6 pages and 4 figure

    Epitranscriptomics for Biomedical Discovery

    Get PDF
    Epitranscriptomics is a newly burgeoning field pertaining to the complete delineation and elucidation of chemical modifications of nucleotides found within all classes of RNA that do not involve a change in the ribonucleotide sequence. More than 140 diverse and distinct nucleotide modifications have been identified in RNA, dwarfing the number of nucleotide modifications found in DNA. The majority of epitranscriptomic modifications have been identified in ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). However, in total, the knowledge of the occurrence, and specifically the function, of RNA modifications remains scarce. Recently, the rapid advancement of next‐generation sequencing and mass spectrometry technologies have allowed for the identification and functional characterization of nucleotide modifications in both protein‐coding and non‐coding RNA on a global, transcriptome scale. In this chapter, we will introduce the concepts of nucleotide modification, summarize transcriptome‐wide RNA modification mapping techniques, highlight recent studies exploring the functions of RNA modifications and their association to disease, and finally offer insight into the future progression of epitranscriptomics

    Phase diagram of a Bose-Fermi mixture in a one-dimensional optical lattice in terms of fidelity and entanglement

    Full text link
    We study the ground-state phase diagram of a Bose-Fermi mixture loaded in a one-dimensional optical lattice by computing the ground-state fidelity and quantum entanglement. We find that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system; and the concurrence can be used to signal the transition between the density-wave phase and the Ising phase.Comment: 4 pages 3 figure

    Synthesis and photocatalytic properties of a new paddle-wheel Cu(II) complex: An integrated experimental and theoretical investigation

    Get PDF
    A new paddle-wheel Cu(II) complex having formula [Cu(L)2(DMF)] (1)  (HL = 2-fluorobenzoic acid) has been synthesized and characterized using FTIR and single crystal X-ray diffraction. The single crystal X-ray diffraction study indicates that the carboxylic acid ligand adopt bridging bidentate modes to coordinate Cu(II) centers thereby forming a binuclear copper(II)carboxylate type structure. The complex has been utilized as photocatalyst to photodegrade model aromatic dyes viz. methyl violet (MV) and rhodamine B (Rh B) in UV light. The photocatalytic results indicated that1 offered moderate photocatalytic activity and offers good stability after performing photocatalysis. The plausible mechanism through which 1 exerted photcatalytic property had been proposed by using density of states (DOS) and partial DOS calculations.           KEY WORDS: Photocatalysis, Aromatic dyes, 2-Fluorobenzoic acid, Calculation Bull. Chem. Soc. Ethiop. 2019, 33(2), 285-292.DOI: https://dx.doi.org/10.4314/bcse.v33i2.

    Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins

    Get PDF
    Previous studies have successfully applied variance decomposition frameworks based on the Budyko equations to determine the relative contribution of variability in precipitation, potential evapotranspiration (E0), and total water storage changes (ΔS) to evapotranspiration variance (σET2) on different timescales; however, the effects of snowmelt (Qm) and vegetation (M) changes have not been incorporated into this framework in snow-dependent basins. Taking the arid alpine basins in the Qilian Mountains in northwest China as the study area, we extended the Budyko framework to decompose the growing season σET2 into the temporal variance and covariance of rainfall (R), E0, ΔS,Qm, and M. The results indicate that the incorporation of Qm could improve the performance of the Budyko framework on a monthly scale; σET2 was primarily controlled by the R variance with a mean contribution of 63 %, followed by the coupled R and M (24.3 %) and then the coupled R and E0 (14.1 %). The effects of M variance or Qm variance cannot be ignored because they contribute 4.3 % and 1.8 % of σET2, respectively. By contrast, the interaction of some coupled factors adversely affected σET2, and the out-of-phase seasonality between R and Qm had the largest effect (−7.6 %). Our methodology and these findings are helpful for quantitatively assessing and understanding hydrological responses to climate and vegetation changes in snow-dependent regions on a finer timescale.</p
    corecore